Kan Fei, Xu Hao, Tang Shuchang, Peñuelas Josep, Lian Xu, Roebroek Caspar T J, Anniwaer Nazhakaiti, Wang Kai, Piao Shilong
Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
National Research Council of Spain (CSIC), Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Catalonia, 08193, Spain.
Nat Commun. 2025 May 13;16(1):4410. doi: 10.1038/s41467-025-59547-y.
Forestation is a proposed solution for mitigating global warming through carbon sequestration. However, its biophysical effects through surface energy modulation, particularly under rising CO levels, is less understood. Here we investigate the biophysical effects of global potential forestation on near-surface air temperature (T) under increasing CO concentrations using a land-atmosphere coupled model with slab ocean module. Our findings reveal that, under current climate conditions, the biophysical effect of global full-potential forestation can reduce land surface T by 0.062 °C globally. However, this cooling benefit diminishes as CO rises. While elevated CO slightly alters evaporative local cooling via stomatal closure and adjustments in forestation-driven rainfall regimes, the dominant reduction stems from non-local mechanisms. Background climate shifts reorganize forestation-induced horizontal temperature advection, weakening remote cooling in the Northern Hemisphere. These findings highlight the necessity of incorporating dynamic forest management strategies to optimize mitigation potential under a changing climate.
造林是一种通过碳固存来缓解全球变暖的解决方案。然而,其通过地表能量调节产生的生物物理效应,尤其是在二氧化碳浓度上升的情况下,人们了解得较少。在这里,我们使用具有平板海洋模块的陆-气耦合模型,研究了在二氧化碳浓度增加的情况下,全球潜在造林对近地表气温(T)的生物物理效应。我们的研究结果表明,在当前气候条件下,全球全潜力造林的生物物理效应可使全球陆地表面温度降低0.062°C。然而,随着二氧化碳浓度的上升,这种降温效益会减弱。虽然二氧化碳浓度升高会通过气孔关闭和造林驱动的降雨模式调整略微改变蒸发局部冷却,但主要的降温源于非局部机制。背景气候变化会重新组织造林引起的水平温度平流,削弱北半球的远程冷却。这些发现凸显了纳入动态森林管理策略以在变化的气候下优化缓解潜力的必要性。