Martínez-Cisterna Daniel, Chen Lingyun, Bardehle Leonardo, Hermosilla Edward, Tortella Gonzalo, Chacón-Fuentes Manuel, Rubilar Olga
Doctorado en Ciencias de Recursos Naturales, Facultad de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile.
Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile.
Int J Mol Sci. 2025 Apr 26;26(9):4130. doi: 10.3390/ijms26094130.
This study explores the biosynthesis, characterization, and evaluation of silver nanoparticles coated with chitosan (AgChNPs) for liquid nanocomposite and biofilm formation in integrated pest management (IPM). AgChNPs were synthesized using leaf extract as a reducing agent, with varying chitosan concentrations (0.5%, 1%, and 2%) and pH levels (3, 4, and 5). Synthesis was optimized based on nanoparticle size, stability, and polydispersity index (PDI) over 21 days. Biofilms incorporating AgChNPs were analyzed for chemical, physical, mechanical, and thermal properties via Ultraviolet-visible spectroscopy (UV-vis), Dynamic Light Scattering (DLS), Zeta Potential Analysis, Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Transmission Electron Microscopy with Energy Dispersive X-ray Spectroscopy (TEM-EDX), and Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) to quantify silver ionization. TEM confirmed spherical nanoparticles (5.54-61.46 nm), and FTIR validated functionalization on chitosan. AgChNPs with 1% chitosan at pH 4 exhibited optimal properties: a size of 207.88 nm, a zeta potential of +42.30 mV, and a PDI of 0.62. Biofilms displayed tunable mechanical strength, with a tensile strength of 3.48 MPa using 5% glycerol and 2% chitosan and an elongation at break of 24.99 mm. TGA showed a two-step degradation process (98.19% mass loss). Ag ionization was 62.57 mg/L in the liquid nanocomposite and 184.07 mg/kg in the biofilms. These findings highlight AgChNPs' potential for controlled-release properties and enhanced mechanical performance, supporting sustainable agricultural applications.
本研究探索了用于综合虫害管理(IPM)中液体纳米复合材料和生物膜形成的壳聚糖包覆银纳米颗粒(AgChNPs)的生物合成、表征及评估。使用叶提取物作为还原剂,在不同的壳聚糖浓度(0.5%、1%和2%)和pH值水平(3、4和5)下合成AgChNPs。基于21天内纳米颗粒的大小、稳定性和多分散指数(PDI)对合成进行了优化。通过紫外可见光谱(UV-vis)、动态光散射(DLS)、zeta电位分析、傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)、带能谱的透射电子显微镜(TEM-EDX)以及电感耦合等离子体发射光谱(ICP-OES)对包含AgChNPs的生物膜的化学、物理、机械和热性能进行了分析,以量化银离子化。TEM证实了球形纳米颗粒(5.54 - 61.46 nm),FTIR验证了壳聚糖上的功能化。在pH值为4时含1%壳聚糖的AgChNPs表现出最佳性能:尺寸为207.88 nm,zeta电位为+42.30 mV,PDI为0.62。生物膜显示出可调的机械强度,使用5%甘油和2%壳聚糖时的拉伸强度为3.48 MPa,断裂伸长率为24.99 mm。热重分析(TGA)显示出两步降解过程(质量损失98.19%)。在液体纳米复合材料中银离子化程度为62.57 mg/L,在生物膜中为184.07 mg/kg。这些发现突出了AgChNPs在控释性能和增强机械性能方面的潜力,支持了可持续农业应用。