Suppr超能文献

用于制备非细胞毒性和抗菌金属聚合物基纳米复合材料系统的银纳米粒子的生物合成。

Biosynthesis of silver nanoparticles for the fabrication of non cytotoxic and antibacterial metallic polymer based nanocomposite system.

机构信息

The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi, 75270, Pakistan.

Department of Metallurgy and Material Engineering, Mehran University of Engineering and Technology (MUET), Jamshoro, Pakistan.

出版信息

Sci Rep. 2021 May 18;11(1):10500. doi: 10.1038/s41598-021-90016-w.

Abstract

Nanomaterials have significantly contributed in the field of nanomedicine as this subject matter has combined the usefulness of natural macromolecules with organic and inorganic nanomaterials. In this respect, various types of nanocomposites are increasingly being explored in order to discover an effective approach in controlling high morbidity and mortality rate that had triggered by the evolution and emergence of multidrug resistant microorganisms. Current research is focused towards the production of biogenic silver nanoparticles for the fabrication of antimicrobial metallic-polymer-based non-cytotoxic nanocomposite system. An ecofriendly approach was adapted for the production of silver nanoparticles using fungal biomass (Aspergillus fumigatus KIBGE-IB33). The biologically synthesized nanoparticles were further layered with a biodegradable macromolecule (chitosan) to improve and augment the properties of the developed nanocomposite system. Both nanostructures were characterized using different spectrographic analyses including UV-visible and scanning electron microscopy, energy dispersive X-ray analysis, dynamic light scattering, and Fourier transform infrared spectroscopic technique. The biologically mediated approach adapted in this study resulted in the formation of highly dispersed silver nanoparticles that exhibited an average nano size and zeta potential value of 05 nm (77.0%) and - 22.1 mV, respectively with a polydispersity index of 0.4. Correspondingly, fabricated silver-chitosan nanocomposites revealed a size of 941 nm with a zeta potential and polydispersity index of + 63.2 mV and 0.57, respectively. The successful capping of chitosan on silver nanoparticles prevented the agglomeration of nanomaterial and also facilitated the stabilization of the nano system. Both nanoscopic entities exhibited antimicrobial potential against some pathogenic bacterial species but did not displayed any antifungal activity. The lowest minimal inhibitory concentration of nanocomposite system (1.56 µg ml) was noticed against Enterococcus faecalis ATCC 29212. Fractional inhibitory concentration index of the developed nanocomposite system confirmed its improved synergistic behavior against various bacterial species with no cytotoxic effect on NIH/3T3 cell lines. Both nanostructures, developed in the present study, could be utilized in the form of nanomedicines or nanocarrier system after some quantifiable trials as both of them are nonhazardous and have substantial antibacterial properties.

摘要

纳米材料在纳米医学领域做出了重要贡献,因为这个主题将天然大分子的有用性与有机和无机纳米材料结合在一起。在这方面,为了发现一种有效方法来控制由多药耐药微生物的进化和出现引发的高发病率和死亡率,各种类型的纳米复合材料正在被越来越多地探索。目前的研究集中在生产生物合成的银纳米粒子,以制造抗菌金属-聚合物基非细胞毒性纳米复合材料系统。采用一种环保的方法,使用真菌生物质(烟曲霉 KIBGE-IB33)生产银纳米粒子。生物合成的纳米粒子进一步与可生物降解的大分子(壳聚糖)分层,以改善和增强所开发的纳米复合材料系统的性能。这两种纳米结构都使用不同的光谱分析进行了表征,包括紫外-可见分光光度法和扫描电子显微镜、能量色散 X 射线分析、动态光散射和傅里叶变换红外光谱技术。本研究中采用的生物介导方法导致形成了高度分散的银纳米粒子,其平均纳米尺寸和 Zeta 电位值分别为 05nm(77.0%)和-22.1mV,多分散指数为 0.4。相应地,制备的银-壳聚糖纳米复合材料的粒径为 941nm,Zeta 电位和多分散指数分别为+63.2mV和 0.57。壳聚糖成功地包覆在银纳米粒子上,防止了纳米材料的团聚,并有助于纳米体系的稳定。这两种纳米实体都表现出对一些致病性细菌的抗菌潜力,但对真菌没有显示出任何抗真菌活性。纳米复合材料系统的最低最小抑菌浓度(1.56μgml)被发现对粪肠球菌 ATCC 29212 有效。所开发的纳米复合材料系统的部分抑菌浓度指数证实了其对各种细菌的协同作用得到了改善,对 NIH/3T3 细胞系没有细胞毒性。本研究中开发的两种纳米结构都可以在经过一些可量化的试验后,以纳米药物或纳米载体系统的形式使用,因为它们都没有危害性,并且具有实质性的抗菌性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a13e/8131587/3b7efdcd9dd9/41598_2021_90016_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验