Jiang Hou, Yao Ling, Qin Jun, Bai Yongqing, Brandt Martin, Lian Xu, Davis Steve J, Lu Ning, Zhao Wenli, Liu Tang, Zhou Chenghu
State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.
Nat Commun. 2025 May 15;16(1):4523. doi: 10.1038/s41467-025-59879-9.
Accelerating energy transition towards renewables is central to net-zero emissions. However, building a global power system dominated by solar and wind energy presents immense challenges. Here, we demonstrate the potential of a globally interconnected solar-wind system to meet future electricity demands. We estimate that such a system could generate ~3.1 times the projected 2050 global electricity demand. By optimizing solar-wind deployment, storage capacity, and trans-regional transmission, the solar-wind penetration could be achieved using only 29.4% of the highest potential, with a 15.6% reduction in initial investment compared to a strategy without interconnection. Global interconnection improves energy efficiency, mitigates the variability of renewable energy, promotes energy availability, and eases the economic burden of decarbonization. Importantly, this interconnected system shows remarkable resilience to climate extremes, generation outages, transmission disruptions, and geopolitical conflicts. Our findings underscore the potential of global interconnection in enabling high renewable penetration and guiding sustainable energy transitions.
加速向可再生能源的能源转型是实现净零排放的核心。然而,构建一个以太阳能和风能为主导的全球电力系统面临着巨大挑战。在此,我们展示了全球互联的太阳能-风能系统满足未来电力需求的潜力。我们估计,这样一个系统能够产生的电量约为预计的2050年全球电力需求的3.1倍。通过优化太阳能-风能部署、储能容量和跨区域输电,仅需利用最高潜力的29.4%就能实现太阳能-风能的渗透率,与无互联策略相比,初始投资减少15.6%。全球互联提高了能源效率,减轻了可再生能源的波动性,促进了能源供应,并减轻了脱碳的经济负担。重要的是,这个互联系统对极端气候、发电中断、输电故障和地缘政治冲突表现出显著的恢复力。我们的研究结果强调了全球互联在实现高可再生能源渗透率和引导可持续能源转型方面的潜力。