Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA.
Sci Adv. 2023 May 5;9(18):eadg7397. doi: 10.1126/sciadv.adg7397.
The prevalence of orthopedic implants is increasing with an aging population. These patients are vulnerable to risks from periprosthetic infections and instrument failures. Here, we present a dual-functional smart polymer foil coating compatible with commercial orthopedic implants to address both septic and aseptic failures. Its outer surface features optimum bioinspired mechano-bactericidal nanostructures, capable of killing a wide spectrum of attached pathogens through a physical process to reduce the risk of bacterial infection, without directly releasing any chemicals or harming mammalian cells. On its inner surface in contact with the implant, an array of strain gauges with multiplexing transistors, built on single-crystalline silicon nanomembranes, is incorporated to map the strain experienced by the implant with high sensitivity and spatial resolution, providing information about bone-implant biomechanics for early diagnosis to minimize the probability of catastrophic instrument failures. Their multimodal functionalities, performance, biocompatibility, and stability are authenticated in sheep posterolateral fusion model and rodent implant infection model.
随着人口老龄化,骨科植入物的患病率正在上升。这些患者容易受到假体周围感染和器械故障的风险。在这里,我们提出了一种兼容商业骨科植入物的双功能智能聚合物箔涂层,以解决感染和非感染故障。其外表面具有最佳仿生机械杀菌纳米结构,能够通过物理过程杀死附着的多种病原体,降低细菌感染的风险,而不会直接释放任何化学物质或伤害哺乳动物细胞。在与植入物接触的内表面上,集成了一组带有多路复用晶体管的应变计,这些应变计构建在单晶硅纳米膜上,以高灵敏度和空间分辨率映射植入物所经历的应变,为早期诊断提供有关骨-植入物生物力学的信息,以最大程度地降低灾难性器械故障的概率。它们的多模态功能、性能、生物相容性和稳定性在绵羊后路融合模型和啮齿动物植入物感染模型中得到了验证。