Gao Zan, Liu Wenxi, McDonough Daniel J, Zeng Nan, Lee Jung Eun
School of Kinesiology, University of Minnesota-Twin Cities, 1900 University Ave. SE, Minneapolis, MN 55455, USA.
Department of Physical Education, Shanghai Jiao Tong University, Shanghai 200240, China.
J Clin Med. 2021 Dec 18;10(24):5951. doi: 10.3390/jcm10245951.
Physical behaviors (e.g., physical activity and sedentary behavior) have been the focus among many researchers in the biomedical and behavioral science fields. The recent shift from hip- to wrist-worn accelerometers in these fields has signaled the need to develop novel approaches to process raw acceleration data of physical activity and sedentary behavior. However, there is currently no consensus regarding the best practices for analyzing wrist-worn accelerometer data to accurately predict individuals' energy expenditure and the times spent in different intensities of free-living physical activity and sedentary behavior. To this end, accurately analyzing and interpreting wrist-worn accelerometer data has become a major challenge facing many clinicians and researchers. In response, this paper attempts to review different methodologies for analyzing wrist-worn accelerometer data and offer cutting edge, yet appropriate analysis plans for wrist-worn accelerometer data in the assessment of physical behavior. In this paper, we first discuss the fundamentals of wrist-worn accelerometer data, followed by various methods of processing these data (e.g., cut points, steps per minute, machine learning), and then we discuss the opportunities, challenges, and directions for future studies in this area of inquiry. This is the most comprehensive review paper to date regarding the analysis and interpretation of free-living physical activity data derived from wrist-worn accelerometers, aiming to help establish a blueprint for processing wrist-derived accelerometer data.
身体行为(如体育活动和久坐行为)一直是生物医学和行为科学领域众多研究人员关注的焦点。这些领域中最近从佩戴在髋部的加速度计转向佩戴在手腕的加速度计,这表明需要开发新方法来处理体育活动和久坐行为的原始加速度数据。然而,目前对于分析佩戴在手腕的加速度计数据以准确预测个体能量消耗以及在不同强度的自由生活体育活动和久坐行为中所花费时间的最佳实践尚无共识。为此,准确分析和解释佩戴在手腕的加速度计数据已成为许多临床医生和研究人员面临的一项重大挑战。作为回应,本文试图回顾分析佩戴在手腕的加速度计数据的不同方法,并为评估身体行为时佩戴在手腕的加速度计数据提供前沿且合适的分析计划。在本文中,我们首先讨论佩戴在手腕的加速度计数据的基本原理,接着介绍处理这些数据的各种方法(如切点、每分钟步数、机器学习),然后我们讨论该研究领域未来研究的机遇、挑战和方向。这是迄今为止关于分析和解释源自佩戴在手腕的加速度计的自由生活体育活动数据的最全面的综述论文,旨在帮助建立处理源自手腕的加速度计数据的蓝图。