Gupta Vibha, Petursson Petur, Hilgendorf Lukas, Rawshani Aidin, Borén Jan, Råmunddal Truls, Omerovic Elmir, Louca Antros, Angerås Oskar, Schneiderman Justin, Skoglund Kristofer, Bhatt Deepak L, Kjellberg Magnus, Andersson Erik, Pirazzi Carlo, Rawshani Araz
Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Bruna stråket 16, 413 45 Göteborg, Gothenburg, Sweden.
Wallenberg Center for Molecular and Translational Medicine, Wallenberg Laboratory, Blå stråket 5, staircase H, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden.
Eur Heart J Digit Health. 2025 Apr 1;6(3):382-391. doi: 10.1093/ehjdh/ztaf029. eCollection 2025 May.
Accurate detection of coronary artery stenosis (CAS) on coronary computed tomography angiography is vital for saving lives, as timely diagnosis can prevent severe cardiac events. However, this task remains challenging due to data complexity and variability in imaging protocols. Deep learning offers promising potential to automate detection, but robust methods are essential to address real-world challenges effectively and enhance patient outcomes.
A total of 900 cases with curved multiplanar reformations, pre-generated during routine clinical workflows, were used to train a multi-instance learning (MIL) model for detecting significant CAS (≥50% luminal obstruction) in the left anterior descending (LAD), right coronary artery (RCA), and left circumflex (LCX), comprising 776 LAD, 694 RCA, and 600 LCX reconstructions. Patient-level predictions utilized attention scores to quantify each slice's contribution, ensuring a robust and interpretable diagnostic approach. The model achieved the best performance for LAD [area under the curve (AUC): 0.92, 95% confidence interval (CI): 0.87-0.96; Brier score: 0.11], followed by RCA (AUC: 0.91, 95% CI: 0.82-0.999; Brier score: 0.09) and LCX (AUC: 0.92, 95% CI: 0.84-0.99; Brier score: 0.07). Calibration was good for LAD but less precise for RCA and LCX. Attention scores enhanced diagnostic precision by focusing on the most relevant slices.
This study highlights the potential of MIL models for CAS detection, with remarkable performance in the LAD. By using attention scores, the model effectively identifies key slices from real-world data, seamlessly integrating with routine clinical workflows. Multi-range pre-processing addresses data complexity, enhancing diagnostic accuracy and supporting clinical decision-making.
在冠状动脉计算机断层扫描血管造影上准确检测冠状动脉狭窄(CAS)对挽救生命至关重要,因为及时诊断可预防严重心脏事件。然而,由于数据复杂性和成像协议的变异性,这项任务仍然具有挑战性。深度学习为自动检测提供了有前景的潜力,但强大的方法对于有效应对现实世界的挑战和改善患者预后至关重要。
总共900例在常规临床工作流程中预先生成的具有曲面多平面重建的病例用于训练一个多实例学习(MIL)模型,以检测左前降支(LAD)、右冠状动脉(RCA)和左旋支(LCX)中的显著CAS(管腔阻塞≥50%),包括776个LAD、694个RCA和600个LCX重建。患者水平的预测利用注意力分数来量化每个切片的贡献,确保一种稳健且可解释的诊断方法。该模型在LAD上表现最佳[曲线下面积(AUC):0.92,95%置信区间(CI):0.87 - 0.96;布里尔评分:0.11],其次是RCA(AUC:0.91,95% CI:0.82 - 0.999;布里尔评分:0.09)和LCX(AUC:0.92,95% CI:0.84 - 0.99;布里尔评分:0.07)。校准对于LAD良好,但对于RCA和LCX不太精确。注意力分数通过关注最相关的切片提高了诊断精度。
本研究突出了MIL模型在CAS检测中的潜力,在LAD方面表现出色。通过使用注意力分数,该模型有效地从现实世界数据中识别关键切片,与常规临床工作流程无缝集成。多范围预处理解决了数据复杂性,提高了诊断准确性并支持临床决策。