Suppr超能文献

使用原始噪声建模去噪极低场磁共振图像。

Denoising very low-field magnetic resonance images using native noise modeling.

作者信息

Ssentamu Tonny, Kimbowa Alvin, Omoding Ronald, Atamba Edgar, Mukwaya Pius K, Jjuuko George W, Geethanath Sairam

机构信息

Department of Physiology, Makerere University, Kampala, Uganda.

School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.

出版信息

Front Neuroimaging. 2025 May 6;4:1501801. doi: 10.3389/fnimg.2025.1501801. eCollection 2025.

Abstract

Low-field MRI is gaining interest, especially in low-resource settings, due to its low cost, portability, small footprint, and low power consumption. However, it suffers from significant noise, limiting its clinical utility. This study introduces native noise denoising (NND), which leverages the inherent noise characteristics of the acquired low-field data. By obtaining the noise characteristics from corner patches of low-field images, we iteratively added similar noise to high-field images to create a paired noisy-clean dataset. A U-Net based denoising autoencoder was trained on this dataset and evaluated on three low-field datasets: the M4Raw dataset (0.3T), brain MRI (0.05T), and phantom images (0.05T). The NND approach demonstrated improvements in signal-to-noise ratio (SNR) of 32.76%, 19.02%, and 8.16% across the M4Raw, and phantom datasets, respectively. Qualitative assessments, including difference maps, line intensity plots, and effective receptive fields, suggested that NND preserves structural details and edges compared to random noise denoising (RND), indicating potential enhancements in visual quality. This substantial improvement in low-field imaging quality addresses the fundamental challenge of diagnostic confidence in resource-constrained settings. By mitigating the primary technical limitation of these systems, our approach expands the clinical utility of low-field MRI scanners, potentially facilitating broader access to diagnostic imaging across resource-limited healthcare environments globally.

摘要

低场磁共振成像(MRI)正越来越受到关注,尤其是在资源匮乏的环境中,这是因为其成本低、可携带、占地面积小且功耗低。然而,它存在明显的噪声,限制了其临床应用。本研究引入了原生噪声去噪(NND)方法,该方法利用了采集到的低场数据的固有噪声特性。通过从低场图像的角点补丁中获取噪声特性,我们迭代地向高场图像添加相似噪声,以创建一个配对的噪声-无噪声数据集。基于U-Net的去噪自动编码器在该数据集上进行训练,并在三个低场数据集上进行评估:M4Raw数据集(0.3T)、脑部MRI(0.05T)和体模图像(0.05T)。NND方法在M4Raw数据集、脑部MRI数据集和体模数据集中的信噪比(SNR)分别提高了32.76%、19.02%和8.16%。包括差异图、线强度图和有效感受野在内的定性评估表明,与随机噪声去噪(RND)相比,NND保留了结构细节和边缘,表明视觉质量有潜在提升。低场成像质量的这一显著改善解决了资源受限环境中诊断信心的根本挑战。通过减轻这些系统的主要技术限制,我们的方法扩展了低场MRI扫描仪的临床应用,有可能在全球资源有限的医疗环境中促进更广泛地获得诊断成像服务。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cd6/12089061/9c5dd81611e6/fnimg-04-1501801-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验