Maga A Murat, Tustison Nicholas J, Avants Brian B
Department of Pediatrics, Division of Craniofacial Medicine, University of Washington, Seattle, WA, USA.
Seattle Children's Research Institute, Center for Developmental Biology and Regenerative Medicine, Seattle, WA, USA.
J Anat. 2017 Sep;231(3):433-443. doi: 10.1111/joa.12645. Epub 2017 Jun 28.
Laboratory mice are staples for evo/devo and genetics studies. Inbred strains provide a uniform genetic background to manipulate and understand gene-environment interactions, while their crosses have been instrumental in studies of genetic architecture, integration and modularity, and mapping of complex biological traits. Recently, there have been multiple large-scale studies of laboratory mice to further our understanding of the developmental basis, evolution, and genetic control of shape variation in the craniofacial skeleton (i.e. skull and mandible). These experiments typically use micro-computed tomography (micro-CT) to capture the craniofacial phenotype in 3D and rely on manually annotated anatomical landmarks to conduct statistical shape analysis. Although the common choice for imaging modality and phenotyping provides the potential for collaborative research for even larger studies with more statistical power, the investigator (or lab-specific) nature of the data collection hampers these efforts. Investigators are rightly concerned that subtle differences in how anatomical landmarks were recorded will create systematic bias between studies that will eventually influence scientific findings. Even if researchers are willing to repeat landmark annotation on a combined dataset, different lab practices and software choices may create obstacles for standardization beyond the underlying imaging data. Here, we propose a freely available analysis system that could assist in the standardization of micro-CT studies in the mouse. Our proposal uses best practices developed in biomedical imaging and takes advantage of existing open-source software and imaging formats. Our first contribution is the creation of a synthetic template for the adult mouse craniofacial skeleton from 25 inbred strains and five F1 crosses that are widely used in biological research. The template contains a fully segmented cranium, left and right hemi-mandibles, endocranial space, and the first few cervical vertebrae. We have been using this template in our lab to segment and isolate cranial structures in an automated fashion from a mixed population of mice, including craniofacial mutants, aged 4-12.5 weeks. As a secondary contribution, we demonstrate an application of nearly automated shape analysis, using symmetric diffeomorphic image registration. This approach, which we call diGPA, closely approximates the popular generalized Procrustes analysis (GPA) but negates the collection of anatomical landmarks. We achieve our goals by using the open-source advanced normalization tools (ANT) image quantification library, as well as its associated R library (ANTsR) for statistical image analysis. Finally, we make a plea to investigators to commit to using open imaging standards and software in their labs to the extent possible to increase the potential for data exchange and improve the reproducibility of findings. Future work will incorporate more anatomical detail (such as individual cranial bones, turbinals, dentition, middle ear ossicles) and more diversity into the template.
实验小鼠是进化发育生物学和遗传学研究的主要对象。近交系为研究基因与环境的相互作用提供了统一的遗传背景,而它们的杂交后代在遗传结构、整合与模块性以及复杂生物学性状的定位研究中发挥了重要作用。最近,针对实验小鼠开展了多项大规模研究,以加深我们对颅面骨骼(即头骨和下颌骨)形状变异的发育基础、进化过程及遗传控制的理解。这些实验通常使用微型计算机断层扫描(micro-CT)来三维捕捉颅面表型,并依靠手动标注的解剖标志点进行统计形状分析。尽管这种常用成像方式和表型分析方法为开展更具统计学效力的更大规模合作研究提供了可能,但数据收集的研究者(或特定实验室)性质阻碍了这些努力。研究者们担心,解剖标志点记录方式的细微差异会在不同研究之间造成系统偏差,最终影响科学发现。即便研究人员愿意在合并数据集上重复标志点标注,不同的实验室操作和软件选择也可能在基础成像数据之外为标准化带来障碍。在此,我们提出一种免费的分析系统,可助力小鼠微型计算机断层扫描研究的标准化。我们基于生物医学成像领域的最佳实践,并利用现有的开源软件和成像格式。我们的首要贡献是,根据25个近交系和5个F1杂交系创建了成年小鼠颅面骨骼的合成模板,这些品系在生物学研究中广泛使用。该模板包含完全分割的颅骨、左右半下颌骨、颅腔空间以及头几个颈椎。我们一直在实验室中使用这个模板,以自动方式从4至12.5周龄的混合小鼠群体(包括颅面突变体)中分割和分离颅骨结构。作为第二项贡献,我们展示了一种利用对称微分同胚图像配准的近乎自动化形状分析方法。我们将这种方法称为diGPA,它与广受欢迎的广义普洛透斯分析(GPA)非常接近,但无需收集解剖标志点。我们通过使用开源的高级归一化工具(ANT)图像量化库及其用于统计图像分析的相关R库(ANTsR)实现了这些目标。最后,我们呼吁研究者尽可能在其实验室中采用开放成像标准和软件,以增加数据交换的可能性并提高研究结果的可重复性。未来的工作将把更多解剖细节(如单个颅骨、鼻甲、牙列、中耳小骨)和更多样性纳入模板。