Brückerhoff-Plückelmann Frank, Ovvyan Anna P, Varri Akhil, Borras Hendrik, Klein Bernhard, Meyer Lennart, Wright C David, Bhaskaran Harish, Syed Ghazi Sarwat, Sebastian Abu, Fröning Holger, Pernice Wolfram
Physical Institute, University of Münster, Münster, Germany.
Kirchhoff-Institute for Physics, University of Heidelberg, Heidelberg, Germany.
Nat Comput Sci. 2025 May;5(5):377-387. doi: 10.1038/s43588-025-00800-1. Epub 2025 May 23.
Probabilistic computing excels in approximating combinatorial problems and modeling uncertainty. However, using conventional deterministic hardware for probabilistic models is challenging: (pseudo) random number generation introduces computational overhead and additional data shuffling. Therefore, there is a pressing need for different probabilistic computing architectures that achieve low latencies with reasonable energy consumption. Physical computing offers a promising solution, as these systems do not rely on an abstract deterministic representation of data but directly encode the information in physical quantities, enabling inherent probabilistic architectures utilizing entropy sources. Photonic computing is a prominent variant of physical computing due to the large available bandwidth, several orthogonal degrees of freedom for data encoding and optimal properties for in-memory computing and parallel data transfer. Here, we highlight key developments in physical photonic computing and photonic random number generation. We further provide insights into the realization of probabilistic photonic processors and their impact on artificial intelligence systems and future challenges.
概率计算在逼近组合问题和对不确定性进行建模方面表现出色。然而,使用传统的确定性硬件来实现概率模型具有挑战性:(伪)随机数生成会带来计算开销和额外的数据洗牌。因此,迫切需要不同的概率计算架构,以在合理的能耗下实现低延迟。物理计算提供了一个有前景的解决方案,因为这些系统不依赖于数据的抽象确定性表示,而是直接在物理量中编码信息,从而实现利用熵源的固有概率架构。由于具有大量可用带宽、用于数据编码的多个正交自由度以及内存计算和并行数据传输的最佳特性,光子计算是物理计算的一个突出变体。在这里,我们重点介绍物理光子计算和光子随机数生成的关键进展。我们还深入探讨了概率光子处理器的实现及其对人工智能系统的影响以及未来的挑战。