Jung Erik, Gehring Helge, Brückerhoff-Plückelmann Frank, Krämer Linus, Vazquez-Martel Clara, Blasco Eva, Pernice Wolfram
Heidelberg University, Kirchhoff Institute for Physics, Im Neuenheimer Feld 227, Heidelberg, Germany.
Institute of Physics and Center for Nanotechnology, University of Münster, Münster D-48149, Germany.
Sci Adv. 2025 Sep 26;11(39):eadz1883. doi: 10.1126/sciadv.adz1883.
Photonic integrated circuits (PICs) enable high-bandwidth neuromorphic processors and low-decoherence quantum computing on chip-scale platforms, but robust, scalable optical packaging remains a major challenge. Efficient fiber-to-chip coupling is critical to minimize loss and maintain high optical bandwidth for photonic computing. We present a plug-and-play fiber-to-PIC solution using female multifiber termination push-on cables, with alignment counterparts additively fabricated on the chip via two-photon polymerization. We develop 3D out-of-plane couplers achieving -0.41-decibel peak transmission and broadband performance with losses below 0.55 decibels in the 1500-to 1600-nanometer range. Integration with the plug-and-play interface adds only 0.37 ± 0.12 decibels, yielding a record-low 0.78-decibel loss for passive out-of-plane packaging. Reproducibility is demonstrated by interfacing a 17-port photonic circuit for incoherent photonic computing, coupling the full 100-nanometer spectrum of a superluminescent LED to enable low-noise operation at 17.6 gigabaud. This passive, multiport, and reconfigurable approach delivers high performance, reliability, and versatility, advancing photonic packaging toward the scalability of electronic chip integration.
光子集成电路(PIC)能够在芯片级平台上实现高带宽神经形态处理器和低退相干量子计算,但稳健、可扩展的光学封装仍然是一个重大挑战。高效的光纤到芯片耦合对于最小化损耗和保持光子计算的高光学带宽至关重要。我们提出了一种即插即用的光纤到PIC解决方案,该方案使用母型多光纤端接推入式电缆,并通过双光子聚合在芯片上增材制造对准配对部件。我们开发了3D面外耦合器,在1500至1600纳米范围内实现了-0.41分贝的峰值传输和低于0.55分贝的宽带性能。与即插即用接口集成仅增加0.37±0.12分贝,实现了被动面外封装创纪录的0.78分贝损耗。通过连接用于非相干光子计算的17端口光子电路,将超发光二极管的整个100纳米光谱耦合以实现17.6吉波特的低噪声运行,证明了可重复性。这种无源、多端口和可重构的方法提供了高性能、可靠性和通用性,推动光子封装向电子芯片集成的可扩展性发展。