Suppr超能文献

基于小波变换、重构相空间和深度学习神经网络的脑电信号精神分裂症检测。

Wavelet Transform, Reconstructed Phase Space, and Deep Learning Neural Networks for EEG-Based Schizophrenia Detection.

机构信息

Biomedical Systems and Informatics Engineering Department, Yarmouk University, Irbid 21163, Jordan.

出版信息

Int J Neural Syst. 2024 Sep;34(9):2450046. doi: 10.1142/S0129065724500461. Epub 2024 Jun 28.

Abstract

This study proposes an innovative expert system that uses exclusively EEG signals to diagnose schizophrenia in its early stages. For diagnosing psychiatric/neurological disorders, electroencephalogram (EEG) testing is considered a financially viable, safe, and reliable alternative. Using the reconstructed phase space (RPS) and the continuous wavelet transform, the researchers maximized the differences between the EEG nonstationary signals of normal and schizophrenia individuals, which cannot be observed in the time, frequency, or time-frequency domains. This reveals significant information, highlighting more distinguishable features. Then, a deep learning network was trained to enhance the accuracy of the resulting image classification. The algorithm's efficacy was confirmed through three distinct methods: employing 70% of the dataset for training, 15% for validation, and the remaining 15% for testing. This was followed by a 5-fold cross-validation technique and a leave-one-out classification approach. Each method was iterated 100 times to ascertain the algorithm's robustness. The performance metrics derived from these tests - accuracy, precision, sensitivity, F1 score, Matthews correlation coefficient, and Kappa - indicated remarkable outcomes. The algorithm demonstrated steady performance across all evaluation strategies, underscoring its relevance and reliability. The outcomes validate the system's accuracy, precision, sensitivity, and robustness by showcasing its capability to autonomously differentiate individuals diagnosed with schizophrenia from those in a state of normal health.

摘要

本研究提出了一种创新性的专家系统,该系统仅使用 EEG 信号即可对早期精神分裂症进行诊断。对于精神科/神经科疾病的诊断,脑电图 (EEG) 测试被认为是一种经济可行、安全可靠的替代方法。研究人员使用重构相空间 (RPS) 和连续小波变换,最大限度地提高了正常人和精神分裂症个体 EEG 非稳态信号之间的差异,这些差异在时间、频率或时频域中无法观察到。这揭示了重要的信息,突出了更具可区分性的特征。然后,训练了一个深度学习网络以提高图像分类的准确性。该算法的有效性通过三种不同的方法得到了验证:使用 70%的数据集进行训练、15%进行验证和 15%进行测试。然后采用 5 折交叉验证技术和留一法分类方法。每种方法迭代 100 次,以确定算法的稳健性。从这些测试中得出的性能指标 - 准确性、精度、敏感性、F1 分数、马修斯相关系数和 Kappa - 表明了显著的结果。该算法在所有评估策略中均表现出稳定的性能,突出了其相关性和可靠性。结果通过展示其自主区分精神分裂症患者和健康人群的能力,验证了该系统的准确性、精度、敏感性和稳健性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验