Suppr超能文献

用于从单细胞RNA测序数据增强细胞类型预测的异嗜性感知图神经网络中的配体-受体动力学

Ligand-receptor dynamics in heterophily-aware graph neural networks for enhanced cell type prediction from single-cell RNA-seq data.

作者信息

Duan Lian, Hashemi Mahshad, Ngom Alioune, Rueda Luis

机构信息

School of Computer Science, University of Windsor, Windsor, ON, Canada.

出版信息

Front Mol Biosci. 2025 May 12;12:1547231. doi: 10.3389/fmolb.2025.1547231. eCollection 2025.

Abstract

Graph Neural Networks (GNNs) have emerged as powerful tools for analyzing structured data, particularly in domains where relationships and interactions between entities are key. By leveraging the inherent graph structure in datasets, GNNs excel in capturing complex dependencies and patterns that traditional neural networks might miss. This advantage is especially pronounced in the field of computational biology, where the intricate connections between biological entities play a crucial role. In this context, Our work explores the application of GNNs to single-cell RNA sequencing (scRNA-seq) data, a domain characterized by complex and heterogeneous relationships. By extracting ligand-receptor (L-R) associations from LIANA and constructing Cell-Cell association networks with varying edge homophily ratios, based on L-R information, we enhance the biological relevance and accuracy of depicting cellular communication pathways. While standard GNN models like Graph Convolutional Networks (GCN), GraphSAGE, Graph Attention Networks (GAT), and MixHop often assume homophily (similar nodes are more likely to be connected), this assumption does not always hold in biological networks. To address this, we explore advanced graph neural network methods, such as Graph Convolutional Networks and Gated Bi-Kernel GNNs (GBK-GNN), that are specifically designed to handle heterophilic data. Our study spans across six diverse datasets, enabling a thorough comparison between heterophily-aware GNNs and traditional homophily-assuming models, including Multi-Layer Perceptrons, which disregards graph structure entirely. Our findings highlight the importance of considering data-specific characteristics in GNN applications, demonstrating that heterophily-focused methods can effectively decipher the complex patterns within scRNA-seq data. By integrating multi-omics data, including gene expression profiles and L-R interactions, we pave the way for more accurate and insightful analyses in computational biology, offering a more comprehensive understanding of cellular environments and interactions.

摘要

图神经网络(GNNs)已成为分析结构化数据的强大工具,特别是在实体之间的关系和相互作用至关重要的领域。通过利用数据集中固有的图结构,GNNs在捕捉传统神经网络可能忽略的复杂依赖性和模式方面表现出色。这一优势在计算生物学领域尤为明显,其中生物实体之间的复杂联系起着关键作用。在此背景下,我们的工作探索了GNNs在单细胞RNA测序(scRNA-seq)数据中的应用,该领域具有复杂和异质的关系。通过从LIANA中提取配体-受体(L-R)关联,并基于L-R信息构建具有不同边同质性比率的细胞-细胞关联网络,我们提高了描绘细胞通信通路的生物学相关性和准确性。虽然像图卷积网络(GCN)、GraphSAGE、图注意力网络(GAT)和MixHop等标准GNN模型通常假设同质性(相似节点更有可能连接),但这一假设在生物网络中并不总是成立。为了解决这个问题,我们探索了先进的图神经网络方法,如图卷积网络和门控双内核GNNs(GBK-GNN),它们专门设计用于处理异质数据。我们的研究跨越了六个不同的数据集,能够对考虑异质性的GNNs与传统的假设同质性的模型进行全面比较,包括完全忽略图结构的多层感知器。我们的研究结果强调了在GNN应用中考虑数据特定特征的重要性,表明以异质性为重点的方法可以有效地解读scRNA-seq数据中的复杂模式。通过整合多组学数据,包括基因表达谱和L-R相互作用,我们为计算生物学中更准确和有洞察力的分析铺平了道路,提供了对细胞环境和相互作用更全面的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c473/12104675/b61c7659317a/fmolb-12-1547231-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验