Wyrzykowska Maria, Della Maggiora Gabriel, Deshpande Nikita, Mokarian Ashkan, Yakimovich Artur
Center for Advanced Systems Understanding (CASUS), Görlitz, Germany.
Helmholtz-Zentrum Dresden-Rossendorf e. V. (HZDR), Dresden, Germany.
Sci Data. 2025 May 28;12(1):886. doi: 10.1038/s41597-025-05194-3.
Detecting virus-infected cells in light microscopy requires a reporter signal commonly achieved by immunohistochemistry or genetic engineering. While classification-based machine learning approaches to the detection of virus-infected cells have been proposed, their results lack the nuance of a continuous signal. Such a signal can be achieved by virtual staining. Yet, while this technique has been rapidly growing in importance, the virtual staining of virus-infected cells remains largely uncharted. In this work, we propose a benchmark and datasets to address this. We collate microscopy datasets, containing a panel of viruses of diverse biology and reporters obtained with a variety of magnifications and imaging modalities. Next, we explore the virus infection reporter virtual staining (VIRVS) task employing U-Net and pix2pix architectures as prototypical regressive and generative models. Together our work provides a comprehensive benchmark for VIRVS, as well as defines a new challenge at the interface of Data Science and Virology.
在光学显微镜下检测病毒感染细胞需要一种通常通过免疫组织化学或基因工程实现的报告信号。虽然已经提出了基于分类的机器学习方法来检测病毒感染细胞,但其结果缺乏连续信号的细微差别。这样的信号可以通过虚拟染色来实现。然而,尽管这项技术的重要性迅速增长,但病毒感染细胞的虚拟染色在很大程度上仍未得到充分探索。在这项工作中,我们提出了一个基准和数据集来解决这个问题。我们整理了显微镜数据集,其中包含一组具有不同生物学特性的病毒以及通过各种放大倍数和成像方式获得的报告基因。接下来,我们探索使用U-Net和pix2pix架构作为典型回归模型和生成模型的病毒感染报告基因虚拟染色(VIRVS)任务。我们的工作共同为VIRVS提供了一个全面的基准,并在数据科学和病毒学的交叉领域定义了一个新的挑战。