Suppr超能文献

可视化技术在结构科学中的应用。

Applications of visualization technology in the structural sciences.

作者信息

Eng Edward T, Valdez Nichole R

机构信息

Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Avenue, New York, New York 10027, USA.

Sandia National Laboratories, Albuquerque, New Mexico 87123, USA.

出版信息

Struct Dyn. 2025 May 27;12(3):030901. doi: 10.1063/4.0000753. eCollection 2025 May.

Abstract

The structural sciences are undergoing a transformation driven by advancements in visualization technologies that aid researchers in understanding and communicating experimental data from complex molecular systems. New applications of integrative structural biological and biophysical approaches add a wide variety of complementary information from a broad range of scientific disciplines. These approaches extend structural biophysical methodologies to enable research by the incorporation of a variety of data streams and utilization of tools like molecular graphics, virtual reality, and machine learning. To redefine how structural data-particularly from cryo-electron microscopy and x-ray crystallography-are fed forward for scientific exploration and communication, the advances in tools for data visualization and interpretation have been critical. By bringing molecular systems into an interactive three-dimensional space, these novel technologies enhance research workflows, facilitate structure-based drug design, and create engaging educational experiences. Taken together, these visualization innovations are essential tools for advancing the field by making concepts more accessible and compelling.

摘要

结构科学正在经历一场变革,这场变革由可视化技术的进步所驱动,这些技术有助于研究人员理解和交流来自复杂分子系统的实验数据。综合结构生物学和生物物理方法的新应用从广泛的科学学科中添加了各种各样的补充信息。这些方法扩展了结构生物物理方法,通过纳入各种数据流和利用分子图形、虚拟现实和机器学习等工具来推动研究。为了重新定义结构数据——特别是来自冷冻电子显微镜和X射线晶体学的数据——如何被用于科学探索和交流,数据可视化和解释工具的进步至关重要。通过将分子系统带入交互式三维空间,这些新技术增强了研究工作流程,促进了基于结构的药物设计,并创造了引人入胜的教育体验。总之,这些可视化创新是推进该领域的重要工具,使概念更容易理解和引人入胜。

相似文献

1
Applications of visualization technology in the structural sciences.
Struct Dyn. 2025 May 27;12(3):030901. doi: 10.1063/4.0000753. eCollection 2025 May.
2
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
3
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
7
Exploring DrugBank in Virtual Reality Chemical Space.
J Chem Inf Model. 2018 Sep 24;58(9):1731-1735. doi: 10.1021/acs.jcim.8b00402. Epub 2018 Aug 24.
9
Building blocks for commodity augmented reality-based molecular visualization and modeling in web browsers.
PeerJ Comput Sci. 2020 Feb 17;6:e260. doi: 10.7717/peerj-cs.260. eCollection 2020.
10
Towards human-computer synergetic analysis of large-scale biological data.
BMC Bioinformatics. 2013;14 Suppl 14(Suppl 14):S10. doi: 10.1186/1471-2105-14-S14-S10. Epub 2013 Oct 9.

本文引用的文献

1
AI-based methods for biomolecular structure modeling for Cryo-EM.
Curr Opin Struct Biol. 2025 Feb;90:102989. doi: 10.1016/j.sbi.2025.102989. Epub 2025 Jan 27.
2
Free tools for crystallographic symmetry handling and visualization.
J Appl Crystallogr. 2024 Sep 20;57(Pt 5):1618-1639. doi: 10.1107/S1600576724007659. eCollection 2024 Oct 1.
3
Accurate structure prediction of biomolecular interactions with AlphaFold 3.
Nature. 2024 Jun;630(8016):493-500. doi: 10.1038/s41586-024-07487-w. Epub 2024 May 8.
4
Machine learning approaches to cryoEM density modification differentially affect biomacromolecule and ligand density quality.
Front Mol Biosci. 2024 Apr 18;11:1404885. doi: 10.3389/fmolb.2024.1404885. eCollection 2024.
5
3D animation as a tool for integrative modeling of dynamic molecular mechanisms.
Structure. 2024 Feb 1;32(2):122-130. doi: 10.1016/j.str.2023.12.007. Epub 2024 Jan 5.
6
EMDB-the Electron Microscopy Data Bank.
Nucleic Acids Res. 2024 Jan 5;52(D1):D456-D465. doi: 10.1093/nar/gkad1019.
7
Scaling up cryo-EM for biology and chemistry: The journey from niche technology to mainstream method.
Structure. 2023 Dec 7;31(12):1487-1498. doi: 10.1016/j.str.2023.09.009. Epub 2023 Oct 10.
8
Structural biology: A golden era.
PLoS Biol. 2023 Jun 29;21(6):e3002187. doi: 10.1371/journal.pbio.3002187. eCollection 2023 Jun.
9
A general force field by machine learning on experimental crystal structures. Calculations of intermolecular Gibbs energy with FlexCryst.
Acta Crystallogr A Found Adv. 2023 Mar 1;79(Pt 2):132-144. doi: 10.1107/S2053273323000268. Epub 2023 Feb 9.
10
Development of CryoVR, a virtual reality training system for hands-on cryoEM operations.
Acta Crystallogr D Struct Biol. 2022 Jul 1;78(Pt 7):903-910. doi: 10.1107/S2059798322005654. Epub 2022 Jun 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验