Suppr超能文献

用于冷冻电镜密度修正的机器学习方法对生物大分子和配体密度质量有不同影响。

Machine learning approaches to cryoEM density modification differentially affect biomacromolecule and ligand density quality.

作者信息

Berkeley Raymond F, Cook Brian D, Herzik Mark A

机构信息

Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, United States.

出版信息

Front Mol Biosci. 2024 Apr 18;11:1404885. doi: 10.3389/fmolb.2024.1404885. eCollection 2024.

Abstract

The application of machine learning to cryogenic electron microscopy (cryoEM) data analysis has added a valuable set of tools to the cryoEM data processing pipeline. As these tools become more accessible and widely available, the implications of their use should be assessed. We noticed that machine learning map modification tools can have differential effects on cryoEM densities. In this perspective, we evaluate these effects to show that machine learning tools generally improve densities for biomacromolecules while generating unpredictable results for ligands. This unpredictable behavior manifests both in quantitative metrics of map quality and in qualitative investigations of modified maps. The results presented here highlight the power and potential of machine learning tools in cryoEM, while also illustrating some of the risks of their unexamined use.

摘要

将机器学习应用于低温电子显微镜(cryoEM)数据分析,为cryoEM数据处理流程增添了一系列有价值的工具。随着这些工具变得更易于获取且广泛应用,应对其使用的影响进行评估。我们注意到,机器学习图谱修改工具对cryoEM密度可能会产生不同的影响。从这个角度出发,我们评估这些影响,以表明机器学习工具通常能改善生物大分子的密度,同时却会为配体生成不可预测的结果。这种不可预测的行为在图谱质量的定量指标以及对修改后图谱的定性研究中均有体现。此处呈现的结果凸显了机器学习工具在cryoEM中的强大功能和潜力,同时也说明了未经检验就使用它们所存在的一些风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bb1/11063317/fd4161485866/fmolb-11-1404885-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验