Suppr超能文献

TransembleNet:通过基于迁移学习的集成模型增强媒介蚊虫种类分类

TransembleNet: Enhancing vector mosquito species classification through transfer learning-based ensemble model.

作者信息

Al Maruf Abdullah, Mahmudul Haque Md, Ara Rumy Rownuk, Jahan Puspo Jasmin, Aung Zeyar

机构信息

Department of Computer Science and Engineering, Bangladesh University of Business and Technology, Dhaka, Bangladesh.

Department of Computer Science and Engineering, Stamford University Bangladesh, Dhaka, Bangladesh.

出版信息

PLoS One. 2025 May 29;20(5):e0322171. doi: 10.1371/journal.pone.0322171. eCollection 2025.

Abstract

Mosquitoes, which belong to diverse species, play a significant role in ecological systems and public health. The accurate identification (classification) of mosquito species is essential for a comprehensive understanding of their ecological roles, behaviors, and evolutionary patterns. While numerous studies have attempted to classify the mosquito species based on images, the existing works still have limitations. Our research is focused on vector mosquito classification based on deep ensemble transfer learning. Initially, we employed transfer learning via four pre-trained convolutional neural network (CNN) models. Subsequently, we have proposed the TransembleNet (Transfer Learning-based Ensemble Networks) approach, which is a novel method of generating ensemble learning models using four different combinations of three transfer learning models. All the experiments were done using the Nadam and Adam optimizers, and we have also applied data augmentation techniques. Among the four ensemble models, Ensemble Model 2 (composed of InceptionV3, VGG-16, and ResNet-50) performed the best. It exhibits very high precision, recall, F1-score, and accuracy values on the "Mosquito on Human Skin" dataset by Ong and Ahmed and the "Vector Mosquito" dataset by Park et al. Our proposed method outperformed the state-of-the-art research works for both datasets.

摘要

蚊子属于不同的物种,在生态系统和公共卫生中发挥着重要作用。准确识别(分类)蚊子物种对于全面了解它们的生态作用、行为和进化模式至关重要。虽然许多研究试图基于图像对蚊子物种进行分类,但现有工作仍存在局限性。我们的研究专注于基于深度集成迁移学习的病媒蚊子分类。最初,我们通过四个预训练的卷积神经网络(CNN)模型进行迁移学习。随后,我们提出了TransembleNet(基于迁移学习的集成网络)方法,这是一种使用三种迁移学习模型的四种不同组合生成集成学习模型的新方法。所有实验均使用Nadam和Adam优化器进行,并且我们还应用了数据增强技术。在四个集成模型中,集成模型2(由InceptionV3、VGG - 16和ResNet - 50组成)表现最佳。它在Ong和Ahmed的“人类皮肤上的蚊子”数据集以及Park等人的“病媒蚊子”数据集上展现出非常高的精度、召回率、F1分数和准确率值。我们提出的方法在这两个数据集上均优于当前的前沿研究工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/204e/12121795/7fcf0a3d5f25/pone.0322171.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验