Suppr超能文献

基于 Swin Transformer 的蚊虫种类识别模型。

A Swin Transformer-based model for mosquito species identification.

机构信息

College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.

State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.

出版信息

Sci Rep. 2022 Nov 4;12(1):18664. doi: 10.1038/s41598-022-21017-6.

Abstract

Mosquito transmit numbers of parasites and pathogens resulting in fatal diseases. Species identification is a prerequisite for effective mosquito control. Existing morphological and molecular classification methods have evitable disadvantages. Here we introduced Deep learning techniques for mosquito species identification. A balanced, high-definition mosquito dataset with 9900 original images covering 17 species was constructed. After three rounds of screening and adjustment-testing (first round among 3 convolutional neural networks and 3 Transformer models, second round among 3 Swin Transformer variants, and third round between 2 images sizes), we proposed the first Swin Transformer-based mosquito species identification model (Swin MSI) with 99.04% accuracy and 99.16% F1-score. By visualizing the identification process, the morphological keys used in Swin MSI were similar but not the same as those used by humans. Swin MSI realized 100% subspecies-level identification in Culex pipiens Complex and 96.26% accuracy for novel species categorization. It presents a promising approach for mosquito identification and mosquito borne diseases control.

摘要

蚊子传播大量寄生虫和病原体,导致致命疾病。物种鉴定是有效控制蚊子的前提。现有的形态学和分子分类方法存在不可避免的缺点。在这里,我们引入了深度学习技术来进行蚊子物种鉴定。构建了一个平衡的、高清晰度的蚊子数据集,包含 9900 张原始图像,涵盖了 17 个物种。经过三轮筛选和调整测试(第一轮是 3 种卷积神经网络和 3 种 Transformer 模型,第二轮是 3 种 Swin Transformer 变体,第三轮是在 2 种图像尺寸之间),我们提出了第一个基于 Swin Transformer 的蚊子物种鉴定模型(Swin MSI),准确率为 99.04%,F1 得分为 99.16%。通过可视化鉴定过程,我们发现 Swin MSI 使用的形态学关键特征与人类使用的相似但不完全相同。Swin MSI 实现了对库蚊复合体的亚种级别的 100%鉴定,以及对新物种分类的 96.26%的准确率。这为蚊子鉴定和控制蚊子传播疾病提供了一种很有前途的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/508c/9636261/0fde37b56195/41598_2022_21017_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验