基于镧系元素的纳米颗粒用于双模态光声和磁共振成像诊疗的计算机模拟研究
In-silico study of lanthanide-based nanoparticles for dual-modal photoacoustic and MRI theranostics.
作者信息
Aghdam Farid Alidoust, Rostami Ali
机构信息
Photonics and Nanocrystals Research Lab (PNRL), Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran.
SP-EPT Lab., ASEPE Company, Industrial Park of Advanced Technologies, Tabriz, Iran.
出版信息
Sci Rep. 2025 May 29;15(1):18818. doi: 10.1038/s41598-025-01530-0.
This study presents a comprehensive theoretical assessment of lanthanide-based core-shell nanoparticles for theranostic applications in the near-infrared region. The complex refractive indices of fifteen lanthanide elements were calculated using density functional theory and the hybrid HSE06 method, which provided optical data in the spectral range of 100-2500 nm. Mie's theoretical calculations for various biocompatible coatings (SiO, PEG, TiO) indicated that TiO coatings exhibit better absorption efficiency in the NIR-I window (750-900 nm) (Q up to 9.4×10). The optimal core size for TiO-coated nanoparticles was determined to be between 90 and 110 nm, and the core-shell ratio ranged from 0.54 to 0.63, which provides the highest adsorption efficiency. Modeling biological heat transfer using the Pennes model with the finite element method revealed that the thermal reactions of tissues vary significantly for each tissue type. The thermal threshold time followed a power relation with . The fastest thermal response was observed in breast tissue (threshold time: 2.40-9.60 seconds), while the slowest response was noted in liver tissue (threshold time: 19.20-4.80 seconds). These findings offer key parameters for optimizing lanthanide-based therapeutic imaging platforms and provide a theoretical framework for predicting their performance in biological environments.
本研究对用于近红外区域治疗诊断应用的镧系核壳纳米粒子进行了全面的理论评估。使用密度泛函理论和混合HSE06方法计算了15种镧系元素的复折射率,该方法提供了100 - 2500 nm光谱范围内的光学数据。对各种生物相容性涂层(SiO、PEG、TiO)进行的米氏理论计算表明,TiO涂层在近红外I窗口(750 - 900 nm)表现出更好的吸收效率(Q高达9.4×10)。确定TiO包覆纳米粒子的最佳核尺寸在90至110 nm之间,核壳比在0.54至0.63之间,这提供了最高的吸附效率。使用Pennes模型和有限元方法对生物传热进行建模表明,不同组织类型的组织热反应差异显著。热阈值时间与呈幂函数关系。在乳腺组织中观察到最快的热响应(阈值时间:2.40 - 9.60秒),而在肝脏组织中观察到最慢的响应(阈值时间:19.20 - 4.80秒)。这些发现为优化基于镧系元素的治疗成像平台提供了关键参数,并为预测其在生物环境中的性能提供了理论框架。
相似文献
本文引用的文献
ACS Appl Mater Interfaces. 2025-2-5
Methods Appl Fluoresc. 2022-11-16
ACS Appl Bio Mater. 2020-7-20
J Am Chem Soc. 2021-5-19
Angew Chem Int Ed Engl. 2021-6-1