Suppr超能文献

用于胶体超材料自组装的DNA修饰纳米颗粒

DNA-Patched Nanoparticles for the Self-Assembly of Colloidal Metamaterials.

作者信息

Liang Le, Wu Lintong, Zheng Peng, Ding Tao, Ray Krishanu, Barman Ishan

机构信息

The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China.

Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.

出版信息

JACS Au. 2023 Mar 29;3(4):1176-1184. doi: 10.1021/jacsau.3c00013. eCollection 2023 Apr 24.

Abstract

Colloidal metamaterials are highly desired artificial materials that recapitulate the structure of simple molecules. They exhibit exceptional functionalities conferred by the organization of and specific interaction among constituent elements. Harvesting such exquisite attributes for potential applications necessitates establishing precise control over their structural configuration with high precision. Yet, creating molecule-like small clusters of colloidal metamaterials remains profoundly challenging, as a lack of regioselectively encoded surface chemical heterogeneity prevents specific recognition interactions. Herein, we report a new strategy by harnessing magnetic-bead-assisted DNA cluster transferring to create discretely DNA cluster-patched nanoparticles for the self-assembly of colloidal metamaterials. This strategy affords broad generalizability and scalability for robustly patching DNA clusters on nanoparticles unconstrained by geometrical, dimensional, and compositional complexities commonly encountered in colloidal materials at the nano- and microscale. We direct judiciously patched nanoparticles into a wide variety of nanoassemblies and present a case study demonstrating the distinct metamaterial properties in enhancing the spontaneous emission of diamond nanoparticles. This newly invented strategy is readily implementable and extendable to construct a palette of structurally sophisticated and functionality-explicit architecture, paving the way for nanoscale manipulation of colloidal material functionalities with wide-ranging applications for biological sensing, optical engineering, and catalytic chemistry.

摘要

胶体超材料是备受瞩目的人造材料,它再现了简单分子的结构。它们展现出由组成元素的组织和特定相互作用赋予的卓越功能。为了潜在应用而获取这些精妙特性,需要对其结构构型进行高精度的精确控制。然而,制造类似分子的胶体超材料小簇仍然极具挑战性,因为缺乏区域选择性编码的表面化学异质性会阻止特异性识别相互作用。在此,我们报告一种新策略,即利用磁珠辅助的DNA簇转移来创建离散的DNA簇修补纳米颗粒,用于胶体超材料的自组装。该策略具有广泛的通用性和可扩展性,能够在不受纳米和微米尺度胶体材料中常见的几何、尺寸和组成复杂性限制的情况下,在纳米颗粒上稳健地修补DNA簇。我们将经过明智修补的纳米颗粒引导到各种纳米组装体中,并通过一个案例研究展示了在增强金刚石纳米颗粒自发发射方面独特的超材料特性。这种新发明的策略易于实施且可扩展,能够构建一系列结构复杂且功能明确的架构,为纳米尺度操纵胶体材料功能铺平道路,在生物传感、光学工程和催化化学等广泛应用中具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2142/10131209/58efd4818820/au3c00013_0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验