Suppr超能文献

在约旦推动数据驱动的决策:加强国家卫生信息系统并就卫生系统核心指标集达成共识。

Promoting data-driven decision-making in Jordan: strengthening national health information system and achieving consensus on core set of health system indicators.

作者信息

El-Jardali Fadi, Fadlallah Racha, AlRub Raeda Abu, Jamal Diana, Daher Najla

机构信息

Department of Health Management and Policy, American University of Beirut, Beirut, Lebanon.

Knowledge to Policy (K2P) Center, American University of Beirut, Beirut, Lebanon.

出版信息

Reprod Health. 2025 May 31;22(Suppl 1):72. doi: 10.1186/s12978-025-01988-1.

Abstract

BACKGROUND

A well-functioning health information system (HIS) is foundational for strong health systems and the achievement of the Sustainable Development Goals. In Jordan, the national HIS, overseen by the Ministry of Health, faces challenges related to overlapping data collection, data availability gaps, and operational inefficiencies which compromise effective decision-making. This study aims to promote data-driven decision-making in Jordan by assessing the existing HIS and fostering consensus on a standardized set of indicators for core health system functions, maternal, child and adolescent health, and refugee health.

METHODS

A multifaceted stepwise approach was adopted, encompassing the following steps: baseline assessment of HIS, compilation of a comprehensive list of candidate indicators, consensus meetings to prioritize and validate the indicators, and development of procedure manual for standardizing the shortlisted indicators.

RESULTS

The baseline assessment of HIS identified areas for improvement at the following levels: governance and planning; infrastructure and resources; data management; and institutional capacity to support data-driven decision-making. Of 4,120 indicators reviewed from international sources and 215 from Jordan's indicators inventory, 415 candidate indicators were compiled and categorized into three priority thematic areas: core health and health systems indicators (n = 167), maternal, child and adolescent health indicators (n = 137), and refugee health indicators (n = 111). Fifteen stakeholders took part in the first consensus meeting, 14 in the second, and 10 in the third meeting. Utilizing a criterion-based ranking system, participants independently rated each candidate indicator against three criteria: Importance, Feasibility, and Actionability. The shortlisted indicators were subsequently validated against the criterion 'retain'. This process resulted in a final validated list of indicators, comprising 55 core health systems indicators (33 of which are reported in Jordan); 40 maternal, child and adolescent health indicators (21 of which are reported in Jordan); and 26 refugee health indicators (none of which are reported in Jordan). Participants also suggested indicators to be added to each thematic areas. Three procedure manuals were developed and validated, corresponding to the three thematic areas.

CONCLUSION

Findings from this study can contribute to the broader discourse on HIS reforms in Jordan, emphasizing the need for ongoing efforts to enhance data quality, stakeholder collaboration, and infrastructure.

摘要

背景

一个运转良好的卫生信息系统(HIS)是强大卫生系统和实现可持续发展目标的基础。在约旦,由卫生部监管的国家卫生信息系统面临着与数据收集重叠、数据可用性差距以及运营效率低下相关的挑战,这些问题损害了有效的决策制定。本研究旨在通过评估现有的卫生信息系统并就一套关于核心卫生系统功能、孕产妇、儿童和青少年健康以及难民健康的标准化指标达成共识,来促进约旦的数据驱动型决策。

方法

采用了多方面的逐步方法,包括以下步骤:卫生信息系统的基线评估、编制候选指标综合清单、召开共识会议以对指标进行优先排序和验证,以及制定将入围指标标准化的程序手册。

结果

卫生信息系统的基线评估确定了以下层面需要改进的领域:治理与规划;基础设施与资源;数据管理;以及支持数据驱动型决策的机构能力。在从国际来源审查的4120项指标和来自约旦指标清单的215项指标中,编制了415项候选指标,并将其分为三个优先主题领域:核心卫生与卫生系统指标(n = 167)、孕产妇、儿童和青少年健康指标(n =137)以及难民健康指标(n = 111)。15名利益相关者参加了第一次共识会议,14名参加了第二次会议,10名参加了第三次会议。利用基于标准 的排名系统,参与者根据三个标准对每个候选指标进行独立评分:重要性、可行性和可操作性。随后根据“保留”标准对入围指标进行验证。这一过程产生了最终经过验证的指标清单,包括55项核心卫生系统指标(其中33项在约旦报告);40项孕产妇、儿童和青少年健康指标(其中21项在约旦报告);以及26项难民健康指标(约旦均未报告)。参与者还建议在每个主题领域添加指标。制定并验证了三本程序手册,分别对应三个主题领域。

结论

本研究结果有助于在约旦关于卫生信息系统改革的更广泛讨论中,强调持续努力提高数据质量、利益相关者合作和基础设施的必要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5f/12125760/d511261d3d58/12978_2025_1988_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验