Suppr超能文献

一种用于参数估计的混合简单指数平滑-藤壶交配优化方法:增强马来西亚的新冠疫情预测

A hybrid simple exponential smoothing-barnacles mating optimization approach for parameter estimation: Enhancing COVID-19 forecasting in Malaysia.

作者信息

Aziz Azlan Abdul, Mustaffa Zuriani, Ismail Suzilah, Nor Nor Azriani Mohamad, Fozi Nurin Qistina Mohamad

机构信息

Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA (UiTM) Cawangan Perlis, Arau, 02600 Perlis, Malaysia.

Statistical Analytics, Forecasting & Innovation (SAFI) Research Interest Group, Universiti Teknologi MARA Cawangan Perlis, Arau 02600 Perlis, Malaysia.

出版信息

MethodsX. 2025 May 1;14:103347. doi: 10.1016/j.mex.2025.103347. eCollection 2025 Jun.

Abstract

Single or simple exponential smoothing (SES) is a time series forecasting model popular among researchers due to its simplicity and ease of use. SES only requires one smoothing parameter, alpha, to control how quickly the influence of past observations decreases. However, SES is seen to underperform compared to other models due to parameter selection and initial value setting. Therefore, this study aims to propose a new hybrid model, the Single Exponential Smoothing (SES)-Barnacles Mating Optimization (BMO) algorithm, to estimate the optimal smoothing parameter alpha and initial value that can improve the percentage of forecast accuracy. Some of the highlights of the proposed method are:•A new hybrid model, SES-BMO, has successfully estimated the optimal initial value and smoothing parameter simultaneously with a high forecast accuracy (90.2 %).•The data splitting ratio 80:20 or 75:25 is unsuitable for research cases requiring immediate action and decision, such as the COVID-19 pandemic. Thus, implementing Repeated time-series cross-validation (RTS-CV) is a good practice in model validation.•The average 8-day forecast accuracy is 90.2 %. The lowest and highest forecast accuracy was 83.7 % and 98.8 %.

摘要

单指数平滑法(SES)是一种在研究人员中很受欢迎的时间序列预测模型,因其简单易用。SES只需要一个平滑参数α来控制过去观测值的影响下降的速度。然而,由于参数选择和初始值设定,SES与其他模型相比表现不佳。因此,本研究旨在提出一种新的混合模型,即单指数平滑法(SES)-藤壶交配优化(BMO)算法,以估计能够提高预测准确率百分比的最优平滑参数α和初始值。所提方法的一些亮点如下:

•一种新的混合模型,SES-BMO,已成功同时估计出最优初始值和平滑参数,预测准确率高(90.2%)。

•数据分割比例80:20或75:25不适用于需要立即采取行动和决策的研究案例,如新冠疫情。因此,实施重复时间序列交叉验证(RTS-CV)是模型验证中的一种良好做法。

•平均8天预测准确率为90.2%。最低和最高预测准确率分别为83.7%和98.8%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dafe/12124684/139d57a33a39/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验