Suppr超能文献

重复时间序列交叉验证:一种提高马来西亚新冠疫情预测准确性的新方法。

Repeated time-series cross-validation: A new method to improved COVID-19 forecast accuracy in Malaysia.

作者信息

Abdul Aziz Azlan, Yusoff Marina, Yaacob Wan Fairos Wan, Mustaffa Zuriani

机构信息

College of Computing, Informatics and Mathematics, Universiti Teknologi MARA (UiTM) Cawangan Perlis, Arau 02600, Perlis, Malaysia.

Statistical Analytics, Forecasting & Innovation (SAFI) Research Interest Group, Universiti Teknologi MARA Cawangan Perlis, Arau 02600, Perlis, Malaysia.

出版信息

MethodsX. 2024 Oct 30;13:103013. doi: 10.1016/j.mex.2024.103013. eCollection 2024 Dec.

Abstract

Forecasting COVID-19 cases is challenging, and inaccurate forecast values will lead to poor decision-making by the authorities. Conversely, accurate forecasts aid Malaysian government authorities and agencies (National Security Council, Ministry of Health, Ministry of Finance, Ministry of Education, and Ministry of International Trade and Industry) and financial institutions in formulating action plans, regulations, and legal acts to control COVID-19 spread in the country. Therefore, this study proposes Repeated Time-Series Cross-Validation, a new data-splitting strategy to identify the best forecasting model that is capable of producing the lowest error measures value and a high percentage of forecast accuracy for COVID-19 prediction in Malaysia. Some of the highlights of the proposed method are:•A total of 21 models, five data partitioning sets, and four error measures to improve the forecast accuracy of daily COVID-19 cases in Malaysia.•The best model selected produces the lowest error measure value for the Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Mean Absolute Scaled Error (MASE).•The average 8-day forecast accuracy is 90.2 %. The lowest and highest forecast accuracy was 83.7 % and 98.7 %.

摘要

预测新冠肺炎病例具有挑战性,不准确的预测值会导致当局做出错误决策。相反,准确的预测有助于马来西亚政府当局和机构(国家安全委员会、卫生部、财政部、教育部和国际贸易与工业部)以及金融机构制定行动计划、法规和法律行为,以控制该国新冠肺炎的传播。因此,本研究提出了重复时间序列交叉验证,这是一种新的数据拆分策略,用于识别能够产生最低误差测量值和高预测准确率的最佳预测模型,以预测马来西亚的新冠肺炎情况。该方法的一些亮点包括:

• 共有21种模型、五个数据划分集和四种误差测量方法,以提高马来西亚每日新冠肺炎病例的预测准确率。

• 所选的最佳模型在均方根误差(RMSE)、平均绝对误差(MAE)、平均绝对百分比误差(MAPE)和平均绝对尺度误差(MASE)方面产生最低的误差测量值。

• 平均8天预测准确率为90.2%。最低和最高预测准确率分别为83.7%和98.7%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/139f/11570750/8a124b44ca90/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验