Suppr超能文献

一种用于桡骨远端骨折准确AO分类的多模块增强YOLOv8框架:SCFAST-YOLO

A multi-module enhanced YOLOv8 framework for accurate AO classification of distal radius fractures: SCFAST-YOLO.

作者信息

Wang Yu, Sun Haifu, Jiang Tiankai, Shi JunFeng, Wang Qin, Yang Hongwei, Qiao Yusen

机构信息

Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China.

School of medicine, Nantong University, Nantong, Jiangsu, China.

出版信息

Front Med (Lausanne). 2025 Aug 20;12:1635016. doi: 10.3389/fmed.2025.1635016. eCollection 2025.

Abstract

INTRODUCTION

CT-based classification of distal ulnar-radius fractures requires precise detection of subtle features for surgical planning, yet existing methods struggle to balance accuracy with clinical efficiency. This study aims to develop a lightweight architecture that achieves accurate AO (Arbeitsgemeinschaft für Osteosynthesefragen) typing[an internationally recognized fracture classification system based on fracture location, degree of joint surface involvement, and comminution, divided into three major categories: A (extra-articular), B (partially intra-articular), and C (completely intra-articular)] while maintaining real-time performance. In this task, the major challenges are capturing complex fracture morphologies without compromising detection speed and ensuring precise identification of small articular fragments critical for surgical decision-making.

METHODS

We propose SCFAST-YOLO framework to address these challenges. Its first contribution is introducing the SCConv module, which integrates Spatial and Channel Reconstruction Units to systematically reduce feature redundancy while preserving discriminative information essential for detecting subtle articular fragments. Secondly, we develop the C2f-Faster-EMA module that preserves fine-grained spatial details through optimized information pathways and statistical feature aggregation. Third, our Feature-Driven Pyramid Network facilitates multi-resolution feature fusion across scales for improved detection. Finally, we implement a Target-Aware Dual Detection Head that employs task decomposition to enhance localization precision.

RESULTS AND DISCUSSION

Evaluated on our FHSU-DRF dataset (332 cases, 1,456 CT sequences), SCFAST-YOLO achieves 91.8% mAP@0.5 and 87.2% classification accuracy for AO types, surpassing baseline YOLOv8 by 2.1 and 2.3 percentage points respectively. The most significant improvements appear in complex Type C fractures (3.2 percentage points higher classification accuracy) with consistent average recall of 0.85-0.88 across all fracture patterns. The model maintains real-time inference (52.3 FPS) while reducing parameters, making it clinically viable. Extensive qualitative and quantitative results demonstrate the advantages of our approach. Additionally, we show the broader clinical applications of SCFAST-YOLO in enhancing consistency and efficiency in trauma care.

摘要

引言

基于CT的尺桡骨远端骨折分类需要精确检测细微特征以用于手术规划,但现有方法难以在准确性和临床效率之间取得平衡。本研究旨在开发一种轻量级架构,在保持实时性能的同时,实现准确的AO(骨科学术协会)分型[一种基于骨折位置、关节面受累程度和粉碎程度的国际公认骨折分类系统,分为三大类:A(关节外)、B(部分关节内)和C(完全关节内)]。在这项任务中,主要挑战在于在不影响检测速度的情况下捕捉复杂的骨折形态,并确保精确识别对手术决策至关重要的小关节碎片。

方法

我们提出了SCFAST-YOLO框架来应对这些挑战。其第一个贡献是引入了SCConv模块,该模块集成了空间和通道重建单元,以系统地减少特征冗余,同时保留检测细微关节碎片所需的判别信息。其次,我们开发了C2f-Faster-EMA模块,通过优化信息路径和统计特征聚合来保留细粒度空间细节。第三,我们的特征驱动金字塔网络促进跨尺度的多分辨率特征融合,以改进检测。最后,我们实现了一个目标感知双检测头,采用任务分解来提高定位精度。

结果与讨论

在我们的FHSU-DRF数据集(332例,1456个CT序列)上进行评估,SCFAST-YOLO实现了91.8%的mAP@0.5和87.2%的AO类型分类准确率,分别比基线YOLOv8高出2.1和2.3个百分点。最显著的改进出现在复杂的C型骨折中(分类准确率高出3.2个百分点),所有骨折类型的平均召回率一致保持在0.85-0.88。该模型在减少参数的同时保持实时推理(52.3 FPS),使其在临床上可行。广泛的定性和定量结果证明了我们方法的优势。此外,我们展示了SCFAST-YOLO在提高创伤护理的一致性和效率方面更广泛的临床应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c22c/12405392/8a319848dd95/fmed-12-1635016-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验