文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

PROMISE:使用预训练图像基础模型的提示驱动3D医学图像分割

PROMISE: PROMPT-DRIVEN 3D MEDICAL IMAGE SEGMENTATION USING PRETRAINED IMAGE FOUNDATION MODELS.

作者信息

Li Hao, Liu Han, Hu Dewei, Wang Jiacheng, Oguz Ipek

机构信息

Vanderbilt University.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2024 May;2024. doi: 10.1109/isbi56570.2024.10635207. Epub 2024 Aug 22.


DOI:10.1109/isbi56570.2024.10635207
PMID:40458423
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12128788/
Abstract

To address prevalent issues in medical imaging, such as data acquisition challenges and label availability, transfer learning from natural to medical image domains serves as a viable strategy to produce reliable segmentation results. However, several existing barriers between domains need to be broken down, including addressing contrast discrepancies, managing anatomical variability, and adapting 2D pretrained models for 3D segmentation tasks. In this paper, we propose ProMISe, a prompt-driven 3D medical image segmentation model using only a single point prompt to leverage knowledge from a pretrained 2D image foundation model. In particular, we use the pretrained vision transformer from the Segment Anything Model (SAM) and integrate lightweight adapters to extract depth-related (3D) spatial context without updating the pretrained weights. For robust results, a hybrid network with complementary encoders is designed, and a boundary-aware loss is proposed to achieve precise boundaries. We evaluate our model on two public datasets for colon and pancreas tumor segmentations, respectively. Compared to the state-of-the-art segmentation methods with and without prompt engineering, our proposed method achieves superior performance. The code is publicly available at https://github.com/MedICL-VU/ProMISe.

摘要

为了解决医学成像中的普遍问题,如数据采集挑战和标签可用性问题,从自然图像领域到医学图像领域的迁移学习是一种可行的策略,可用于产生可靠的分割结果。然而,领域之间存在的几个现有障碍需要被打破,包括解决对比度差异、管理解剖变异性以及使二维预训练模型适用于三维分割任务。在本文中,我们提出了ProMISe,这是一种仅使用单点提示来利用预训练二维图像基础模型知识的提示驱动三维医学图像分割模型。具体而言,我们使用来自分割一切模型(SAM)的预训练视觉变换器,并集成轻量级适配器以提取与深度相关的(三维)空间上下文,而无需更新预训练权重。为了获得稳健的结果,设计了一个具有互补编码器的混合网络,并提出了一种边界感知损失以实现精确的边界。我们分别在两个用于结肠和胰腺肿瘤分割的公共数据集上评估了我们的模型。与有无提示工程的最先进分割方法相比,我们提出的方法具有卓越的性能。代码可在https://github.com/MedICL-VU/ProMISe上公开获取。

相似文献

[1]
PROMISE: PROMPT-DRIVEN 3D MEDICAL IMAGE SEGMENTATION USING PRETRAINED IMAGE FOUNDATION MODELS.

Proc IEEE Int Symp Biomed Imaging. 2024-5

[2]
A segment anything model-guided and match-based semi-supervised segmentation framework for medical imaging.

Med Phys. 2025-3-29

[3]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[4]
MA-SAM: A Multi-Atlas Guided SAM Using Pseudo Mask Prompts Without Manual Annotation for Spine Image Segmentation.

IEEE Trans Med Imaging. 2025-5

[5]
Enhancing feature discrimination with pseudo-labels for foundation model in segmentation of 3D medical images.

Neural Netw. 2025-8-15

[6]
Influence of early through late fusion on pancreas segmentation from imperfectly registered multimodal magnetic resonance imaging.

J Med Imaging (Bellingham). 2025-3

[7]
PASS: Test-Time Prompting to Adapt Styles and Semantic Shapes in Medical Image Segmentation.

IEEE Trans Med Imaging. 2025-4

[8]
SAM-Med3D: A Vision Foundation Model for General-Purpose Segmentation on Volumetric Medical Images.

IEEE Trans Neural Netw Learn Syst. 2025-7-31

[9]
Learnable Prompting SAM-Induced Knowledge Distillation for Semi-Supervised Medical Image Segmentation.

IEEE Trans Med Imaging. 2025-5

[10]
EICSeg: Universal Medical Image Segmentation via Explicit In-Context Learning.

IEEE Trans Med Imaging. 2025-7-22

引用本文的文献

[1]
Vision-language foundation models for medical imaging: a review of current practices and innovations.

Biomed Eng Lett. 2025-6-6

[2]
A narrative review of foundation models for medical image segmentation: zero-shot performance evaluation on diverse modalities.

Quant Imaging Med Surg. 2025-6-6

[3]
Research on Medical Image Segmentation Based on SAM and Its Future Prospects.

Bioengineering (Basel). 2025-6-3

[4]
PRISM Lite: A lightweight model for interactive 3D placenta segmentation in ultrasound.

Proc SPIE Int Soc Opt Eng. 2025-2

[5]
Interactive Segmentation Model for Placenta Segmentation from 3D Ultrasound images.

Simpl Med Ultrasound (2024). 2025

[6]
PRISM: A Promptable and Robust Interactive Segmentation Model with Visual Prompts.

Med Image Comput Comput Assist Interv. 2024-10

本文引用的文献

[1]
Medical SAM adapter: Adapting segment anything model for medical image segmentation.

Med Image Anal. 2025-5

[2]
3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation.

Med Image Anal. 2024-12

[3]
nnFormer: Volumetric Medical Image Segmentation via a 3D Transformer.

IEEE Trans Image Process. 2023

[4]
nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation.

Nat Methods. 2021-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索