Li Hao, Liu Han, Hu Dewei, Wang Jiacheng, Oguz Ipek
Vanderbilt University.
Proc IEEE Int Symp Biomed Imaging. 2024 May;2024. doi: 10.1109/isbi56570.2024.10635207. Epub 2024 Aug 22.
To address prevalent issues in medical imaging, such as data acquisition challenges and label availability, transfer learning from natural to medical image domains serves as a viable strategy to produce reliable segmentation results. However, several existing barriers between domains need to be broken down, including addressing contrast discrepancies, managing anatomical variability, and adapting 2D pretrained models for 3D segmentation tasks. In this paper, we propose ProMISe, a prompt-driven 3D medical image segmentation model using only a single point prompt to leverage knowledge from a pretrained 2D image foundation model. In particular, we use the pretrained vision transformer from the Segment Anything Model (SAM) and integrate lightweight adapters to extract depth-related (3D) spatial context without updating the pretrained weights. For robust results, a hybrid network with complementary encoders is designed, and a boundary-aware loss is proposed to achieve precise boundaries. We evaluate our model on two public datasets for colon and pancreas tumor segmentations, respectively. Compared to the state-of-the-art segmentation methods with and without prompt engineering, our proposed method achieves superior performance. The code is publicly available at https://github.com/MedICL-VU/ProMISe.
为了解决医学成像中的普遍问题,如数据采集挑战和标签可用性问题,从自然图像领域到医学图像领域的迁移学习是一种可行的策略,可用于产生可靠的分割结果。然而,领域之间存在的几个现有障碍需要被打破,包括解决对比度差异、管理解剖变异性以及使二维预训练模型适用于三维分割任务。在本文中,我们提出了ProMISe,这是一种仅使用单点提示来利用预训练二维图像基础模型知识的提示驱动三维医学图像分割模型。具体而言,我们使用来自分割一切模型(SAM)的预训练视觉变换器,并集成轻量级适配器以提取与深度相关的(三维)空间上下文,而无需更新预训练权重。为了获得稳健的结果,设计了一个具有互补编码器的混合网络,并提出了一种边界感知损失以实现精确的边界。我们分别在两个用于结肠和胰腺肿瘤分割的公共数据集上评估了我们的模型。与有无提示工程的最先进分割方法相比,我们提出的方法具有卓越的性能。代码可在https://github.com/MedICL-VU/ProMISe上公开获取。
Proc IEEE Int Symp Biomed Imaging. 2024-5
IEEE Trans Med Imaging. 2025-5
J Med Imaging (Bellingham). 2025-3
IEEE Trans Med Imaging. 2025-4
IEEE Trans Neural Netw Learn Syst. 2025-7-31
IEEE Trans Med Imaging. 2025-5
IEEE Trans Med Imaging. 2025-7-22
Quant Imaging Med Surg. 2025-6-6
Bioengineering (Basel). 2025-6-3
Proc SPIE Int Soc Opt Eng. 2025-2
Simpl Med Ultrasound (2024). 2025
Med Image Comput Comput Assist Interv. 2024-10
Med Image Anal. 2025-5
Med Image Anal. 2024-12
IEEE Trans Image Process. 2023