Suppr超能文献

PRISM Lite:一种用于超声中交互式3D胎盘分割的轻量级模型。

PRISM Lite: A lightweight model for interactive 3D placenta segmentation in ultrasound.

作者信息

Li Hao, Oguz Baris, Arenas Gabriel, Yao Xing, Wang Jiacheng, Pouch Alison, Byram Brett, Schwartz Nadav, Oguz Ipek

机构信息

Vanderbilt University.

University of Pennsylvania.

出版信息

Proc SPIE Int Soc Opt Eng. 2025 Feb;13406. doi: 10.1117/12.3047410. Epub 2025 Apr 11.

Abstract

Placenta volume measured from 3D ultrasound (3DUS) images is an important tool for tracking the growth trajectory and is associated with pregnancy outcomes. Manual segmentation is the gold standard, but it is time-consuming and subjective. Although fully automated deep learning algorithms perform well, they do not always yield high-quality results for each case. Interactive segmentation models could address this issue. However, there is limited work on interactive segmentation models for the placenta. Despite their segmentation accuracy, these methods may not be feasible for clinical use as they require relatively large computational power which may be especially prohibitive in low-resource environments, or on mobile devices. In this paper, we propose a lightweight interactive segmentation model aiming for clinical use to interactively segment the placenta from 3DUS images in real-time. The proposed model adopts the segmentation from our fully automated model for initialization and is designed in a human-in-the-loop manner to achieve iterative improvements. The Dice score and normalized surface Dice are used as evaluation metrics. The results show that our model can achieve superior performance in segmentation compared to state-of-the-art models while using significantly fewer parameters. Additionally, the proposed model is much faster for inference and robust to poor initial masks. The code is available at https://github.com/MedICL-VU/PRISM-placenta.

摘要

从三维超声(3DUS)图像测量胎盘体积是追踪生长轨迹的重要工具,且与妊娠结局相关。手动分割是金标准,但它既耗时又主观。尽管全自动深度学习算法表现良好,但它们并非在每种情况下都能产生高质量的结果。交互式分割模型可以解决这个问题。然而,针对胎盘的交互式分割模型的研究工作有限。尽管这些方法分割精度高,但可能不适用于临床,因为它们需要相对较大的计算能力,这在资源匮乏的环境或移动设备上可能尤其难以实现。在本文中,我们提出了一种轻量级交互式分割模型,旨在用于临床,以便从3DUS图像中实时交互式分割胎盘。所提出的模型采用我们全自动模型的分割结果进行初始化,并以人工参与的方式进行设计,以实现迭代改进。采用Dice分数和归一化表面Dice作为评估指标。结果表明,与现有最先进的模型相比,我们的模型在分割方面能够实现更优的性能,同时使用的参数显著更少。此外,所提出的模型推理速度更快,对初始掩码不佳的情况具有鲁棒性。代码可在https://github.com/MedICL-VU/PRISM-placenta获取。

相似文献

1
PRISM Lite: A lightweight model for interactive 3D placenta segmentation in ultrasound.
Proc SPIE Int Soc Opt Eng. 2025 Feb;13406. doi: 10.1117/12.3047410. Epub 2025 Apr 11.
2
Interactive Segmentation Model for Placenta Segmentation from 3D Ultrasound images.
Simpl Med Ultrasound (2024). 2025;15186:132-142. doi: 10.1007/978-3-031-73647-6_13. Epub 2024 Oct 5.
3
PRISM: A Promptable and Robust Interactive Segmentation Model with Visual Prompts.
Med Image Comput Comput Assist Interv. 2024 Oct;15003:389-399. doi: 10.1007/978-3-031-72384-1_37. Epub 2024 Oct 3.
5
Minimally interactive placenta segmentation from three-dimensional ultrasound images.
J Med Imaging (Bellingham). 2020 Jan;7(1):014004. doi: 10.1117/1.JMI.7.1.014004. Epub 2020 Feb 22.
6
Sam2Rad: A segmentation model for medical images with learnable prompts.
Comput Biol Med. 2025 Mar;187:109725. doi: 10.1016/j.compbiomed.2025.109725. Epub 2025 Feb 5.
7
PROMISE: PROMPT-DRIVEN 3D MEDICAL IMAGE SEGMENTATION USING PRETRAINED IMAGE FOUNDATION MODELS.
Proc IEEE Int Symp Biomed Imaging. 2024 May;2024. doi: 10.1109/isbi56570.2024.10635207. Epub 2024 Aug 22.
8
AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy.
Med Phys. 2019 Feb;46(2):576-589. doi: 10.1002/mp.13300. Epub 2018 Dec 17.
9
PMFSNet: Polarized multi-scale feature self-attention network for lightweight medical image segmentation.
Comput Methods Programs Biomed. 2025 Apr;261:108611. doi: 10.1016/j.cmpb.2025.108611. Epub 2025 Jan 25.

本文引用的文献

1
Interactive Segmentation Model for Placenta Segmentation from 3D Ultrasound images.
Simpl Med Ultrasound (2024). 2025;15186:132-142. doi: 10.1007/978-3-031-73647-6_13. Epub 2024 Oct 5.
2
PRISM: A Promptable and Robust Interactive Segmentation Model with Visual Prompts.
Med Image Comput Comput Assist Interv. 2024 Oct;15003:389-399. doi: 10.1007/978-3-031-72384-1_37. Epub 2024 Oct 3.
3
PROMISE: PROMPT-DRIVEN 3D MEDICAL IMAGE SEGMENTATION USING PRETRAINED IMAGE FOUNDATION MODELS.
Proc IEEE Int Symp Biomed Imaging. 2024 May;2024. doi: 10.1109/isbi56570.2024.10635207. Epub 2024 Aug 22.
4
3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation.
Med Image Anal. 2024 Dec;98:103324. doi: 10.1016/j.media.2024.103324. Epub 2024 Aug 23.
5
FNPC-SAM: Uncertainty-Guided False Negative/Positive Control for SAM on Noisy Medical Images.
Proc SPIE Int Soc Opt Eng. 2024 Feb;12926. doi: 10.1117/12.3006867. Epub 2024 Apr 2.
6
Segment anything in medical images.
Nat Commun. 2024 Jan 22;15(1):654. doi: 10.1038/s41467-024-44824-z.
7
Placenta segmentation in ultrasound imaging: Addressing sources of uncertainty and limited field-of-view.
Med Image Anal. 2023 Jan;83:102639. doi: 10.1016/j.media.2022.102639. Epub 2022 Sep 28.
8
Longitudinal subcortical segmentation with deep learning.
Proc SPIE Int Soc Opt Eng. 2021 Feb;11596. doi: 10.1117/12.2582340. Epub 2021 Feb 15.
9
Fully Automated Placental Volume Quantification From 3D Ultrasound for Prediction of Small-for-Gestational-Age Infants.
J Ultrasound Med. 2022 Jun;41(6):1509-1524. doi: 10.1002/jum.15835. Epub 2021 Sep 23.
10
Fully Automated 3-D Ultrasound Segmentation of the Placenta, Amniotic Fluid, and Fetus for Early Pregnancy Assessment.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Jun;68(6):2038-2047. doi: 10.1109/TUFFC.2021.3052143. Epub 2021 May 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验