van der Maas Sven, Denil Simon, Maes Brigitte, Ertaylan Gökhan, Volders Pieter-Jan
Limburg Clinical Research Center (LCRC), UHasselt, Diepenbeek, Belgium.
Unit Health, Environmental Intelligence, Flemish Institute for Technological Research (VITO), Mol, Belgium.
Front Pharmacol. 2025 May 23;16:1584658. doi: 10.3389/fphar.2025.1584658. eCollection 2025.
Pharmacogenomics investigates the impact of genetic variation on drug metabolism, enabling personalized medicine through optimized drug selection and dosing. This study examines the effect of the dynamic star allele nomenclature system on diplotypes and therapeutic recommendations using the GeT-RM dataset while also presenting a revised version to address outdated diplotypes.
PharmVar data up to version 6.2 were downloaded to analyze the evolution of the star allele nomenclature system. FASTQ files from 70 samples of the GeT-RM project were downloaded and aligned to GRCh38, followed by star allele calling using Aldy, PyPGx, and StellarPGx. Diplotypes of the samples were updated based on predefined criteria. Phenotype predictions and therapeutic recommendations were inferred using the PyPGx core API, with CPIC guidelines applied for statin-phenotype combinations.
We reevaluated 1400 diplotypes across 20 pharmacogenes in 70 samples from the GeT-RM dataset using three star allele callers: Aldy, PyPGx, and StellarPGx. Our analysis revealed inconsistencies in 15 of 20 pharmacogenes, with 272 (19.4%) diplotypes being outdated. showed the highest number of discrepant calls, impacting statin dosing recommendations for NA19226.
Our findings demonstrate that outdated allele definitions can alter therapeutic recommendations, emphasizing the need for standardized approaches including mandatory PharmVar version disclosure, implementation of cross-tool validations, and incorporation of confidence metrics for star allele calling tools to ensure reliable pharmacogenomic testing.
药物基因组学研究基因变异对药物代谢的影响,通过优化药物选择和剂量实现个性化医疗。本研究利用GeT-RM数据集研究动态星等位基因命名系统对双倍型和治疗建议的影响,同时还提出了一个修订版本以解决过时的双倍型问题。
下载截至6.2版本的PharmVar数据,以分析星等位基因命名系统的演变。下载来自GeT-RM项目70个样本的FASTQ文件,并与GRCh38进行比对,随后使用Aldy、PyPGx和StellarPGx进行星等位基因分型。根据预定义标准更新样本的双倍型。使用PyPGx核心应用程序编程接口推断表型预测和治疗建议,并将CPIC指南应用于他汀类药物-表型组合。
我们使用三种星等位基因分型工具Aldy、PyPGx和StellarPGx,对GeT-RM数据集中70个样本的20个药物基因中的1400个双倍型进行了重新评估。我们的分析揭示了20个药物基因中有15个存在不一致,其中272个(19.4%)双倍型过时。 显示出差异分型数量最多,影响了NA19226的他汀类药物剂量建议。
我们的研究结果表明,过时的等位基因定义会改变治疗建议,强调需要采用标准化方法,包括强制披露PharmVar版本、实施跨工具验证,以及为星等位基因分型工具纳入置信度指标,以确保可靠的药物基因组学检测。