Sun Mengjing, Zhang Long, Zhou Jiangkuo, Liu Ziping, Peng Cong, Jia Zechen, Lv Yanjie, Wang Yongjun
College of Agronomy, Jilin Agricultural University, Changchun, Jilin, China.
Key Laboratory of Crops Physiological Ecology and Agronomy in Northeast China, Ministry of Agriculture of the People's Republic of China (MOA); Institute of Agricultural Resource and Environment, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China.
Front Plant Sci. 2025 Jun 3;16:1591506. doi: 10.3389/fpls.2025.1591506. eCollection 2025.
Prolonged monoculture of waxy corn ( L. var. ) exacerbates soil nutrient depletion and compromises soil structural integrity, concomitant with underutilization of photosynthetically active radiation (PAR) resources.
Implementing cover cropping post-harvest of waxy corn can utilize residual environmental resources for soil quality improvement. Nevertheless, the agronomic consequences of this practice on canopy architecture optimization and resource allocation dynamics in subsequent growing seasons require systematic elucidation.
The regionally adapted cultivar Wannuo 2000 (W67×W68), predominantly cultivated in northeastern China, was employed for canopy characterization. Three experimental treatments were established, including waxy corn continuous monoculture control (CK), shamrock ( L.) rotation cropping after waxy corn harvest (ZT) and rapeseed ( L.) rotation cropping after waxy corn harvest (ZB). Each treatment incorporated five nitrogen (N) application gradients (0, 60, 120, 180, 240 kg N ha¹) arranged in randomized complete block design (RCBD) with triplicate plots.
Cover crops integration significantly enhanced waxy corn productivity. Mean yields for ZT and ZB systems during 2022-2023 demonstrated 20.74% (8.88 ± 2.50 Mg ha) and 22.26% (8.99 ± 3.12 Mg ha) increases respectively compared to CK. Remarkably, under 25% N reduction scenarios, ZT and ZB achieved 15.25% (44.58 ± 6.28%) and 20.67% (46.68 ± 7.15%) improvements in nitrogen use efficiency (NUE) relative to conventional practice. The path analysis revealed synergistic interactions between cover crop incorporation and N management mediated through canopy structural optimization. Specifically, enhanced leaf area index (4.56 ± 0.69 m² m²) and elevated pre-silking canopy N content (132.61 ± 26.33 g N plant) collectively drove post-silking biomass accumulation (134.88 ± 26.85 g plant) and N remobilization efficiency.
The integrated cover crop-nitrogen reduction system enhanced both yield and NUE relative to monoculture benchmarks, demonstrating dual benefits in environmental conservation and agricultural productivity enhancement.
This study establishes a theoretical framework and provides empirical evidence for the sustainable intensification of waxy corn production systems.
糯玉米(L. var.)的长期单作加剧了土壤养分耗竭并破坏了土壤结构完整性,同时光合有效辐射(PAR)资源利用不足。
在糯玉米收获后实施覆盖作物种植可以利用剩余环境资源来改善土壤质量。然而,这种做法对后续生长季节冠层结构优化和资源分配动态的农艺后果需要系统阐明。
选用东北地区主要种植的区域适应性品种万糯2000(W67×W68)进行冠层特征分析。设置了三个试验处理,包括糯玉米连作单作对照(CK)、糯玉米收获后三叶草(L.)轮作(ZT)和糯玉米收获后油菜(L.)轮作(ZB)。每个处理包含五个施氮梯度(0、60、120、180、240 kg N ha¹),采用随机完全区组设计(RCBD),小区重复三次。
覆盖作物的整合显著提高了糯玉米的生产力。2022 - 2023年期间,ZT和ZB系统的平均产量分别比CK增加了20.74%(8.88 ± 2.50 Mg ha)和22.26%(8.99 ± 3.12 Mg ha)。值得注意的是,在减少25%氮肥用量的情况下,ZT和ZB的氮素利用效率(NUE)相对于传统做法分别提高了15.25%(44.58 ± 6.28%)和20.67%(46.68 ± 7.15%)。通径分析表明,覆盖作物的引入与氮素管理之间存在协同相互作用,通过冠层结构优化介导。具体而言,叶面积指数增加(4.56 ± 0.69 m² m²)和抽雄前冠层氮含量升高(132.61 ± 26.33 g N 株)共同推动了抽雄后生物量积累(134.88 ± 26.85 g 株)和氮素再利用效率。
与单作基准相比,覆盖作物 - 减氮综合系统提高了产量和氮素利用效率,在环境保护和农业生产力提高方面显示出双重效益。
本研究为糯玉米生产系统的可持续集约化建立了理论框架并提供了实证依据。