Suppr超能文献

医学教育中的人工智能:前景、陷阱与实践途径

Artificial Intelligence in Medical Education: Promise, Pitfalls, and Practical Pathways.

作者信息

Saroha Sarup

机构信息

University College London Medical School, London, WC1E 6BT, UK.

出版信息

Adv Med Educ Pract. 2025 Jun 14;16:1039-1046. doi: 10.2147/AMEP.S523255. eCollection 2025.

Abstract

Artificial intelligence (AI) is transforming healthcare, yet its integration into medical education remains limited. As AI-powered tools increasingly assist with diagnostics, administrative tasks, and clinical decision-making, future doctors must have the knowledge and skills to use them effectively. This article explores the role of AI in medical education, highlighting its potential to enhance efficiency, improve patient care, and foster innovation while addressing ethical and safety concerns. The widespread adoption of AI presents both opportunities and challenges. While AI-driven transcription tools reduce administrative burdens and machine learning algorithms enhance diagnostic accuracy, the risks of over-reliance, algorithmic bias, and patient data security remain critical concerns. To navigate these complexities, medical schools must incorporate AI-focused training into their curricula, ensuring graduates can critically assess and safely apply AI technologies in clinical practice. However, AI should not be seen as the only solution; non-technological improvements to clinical workflows must also be considered in parallel. This article proposes practical solutions, including optional AI modules, hands-on training with AI-powered diagnostic tools, and interdisciplinary collaboration through innovation laboratories. By embedding AI education into medical training, institutions can prepare students for a rapidly evolving healthcare landscape, ensuring AI is a tool for improved patient outcomes, not a source of unintended harm. As AI reshapes medicine, equipping future doctors with the skills to use it responsibly is essential for fostering a healthcare system that is efficient, ethical, and patient-centred.

摘要

人工智能(AI)正在改变医疗保健行业,但其在医学教育中的整合程度仍然有限。随着人工智能驱动的工具越来越多地协助进行诊断、管理任务和临床决策,未来的医生必须具备有效使用这些工具的知识和技能。本文探讨了人工智能在医学教育中的作用,强调了其在提高效率、改善患者护理以及促进创新方面的潜力,同时也解决了伦理和安全问题。人工智能的广泛应用既带来了机遇,也带来了挑战。虽然人工智能驱动的转录工具减轻了管理负担,机器学习算法提高了诊断准确性,但过度依赖、算法偏差和患者数据安全等风险仍然是关键问题。为了应对这些复杂性,医学院校必须将以人工智能为重点的培训纳入其课程,确保毕业生能够在临床实践中批判性地评估并安全应用人工智能技术。然而,人工智能不应被视为唯一的解决方案;还必须同时考虑对临床工作流程进行非技术改进。本文提出了切实可行的解决方案,包括可选的人工智能模块、使用人工智能驱动的诊断工具进行实践培训,以及通过创新实验室进行跨学科合作。通过将人工智能教育融入医学培训,院校可以让学生为快速发展的医疗保健格局做好准备,确保人工智能成为改善患者治疗效果的工具,而不是意外伤害的来源。随着人工智能重塑医学,让未来的医生具备负责任地使用它的技能对于构建一个高效、符合伦理且以患者为中心的医疗保健系统至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4481/12176979/6d4a43aefe92/AMEP-16-1039-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验