Suppr超能文献

肺结核患者肺部微生物群与临床诊断的综合研究。

Integrative study of pulmonary microbiome and clinical diagnosis in pulmonary tuberculosis patients.

作者信息

Sun Hongli, Chen Qiuyue, Zhang Dong, Hu Long, Li Song, Lu Minya, Wang Yao, Su Huiting, Gao Yi, Guo Jiayu, Zhao Ying, Du Juan, Liu Cun, Xia Han, Xu Yingchun, Ge Xiaojun, Yang Qiwen

机构信息

Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Department of Clinical Laboratory, The second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.

出版信息

Microbiol Spectr. 2025 Jun 20:e0156324. doi: 10.1128/spectrum.01563-24.

Abstract

UNLABELLED

This study investigated the diagnostic potential of mNGS for detecting MTB in pulmonary tuberculosis patients. We analyzed pulmonary microbiome data to assess its impact on mNGS diagnostic accuracy and explored the association between microbiome profiles and clinical diagnosis. Bronchoalveolar lavage fluid samples were collected from 236 patients with pulmonary infections, and the diagnostic performance of mNGS was compared with traditional methods in detecting MTB. Furthermore, the incidence of false negatives and false positives, as well as the characteristics of the lung microbiota in TB patients, was analyzed to improve the diagnostic precision of mNGS. We observed that among all detection methods, mNGS showed the highest sensitivity (73.33%), followed by X-pert (60.00%), culture (53.33%), RT-PCR (53.33%), and sputum smear (23.33%). Notably, mNGS produced 3 false positive results in 236 samples, yielding a specificity of 98.54%. Analysis of the pulmonary microbiome revealed significant differences in both α-diversity and β-diversity between patients with TB and uninfected controls (P<0.05). Shannon index and Chao1 index were identified as significant predictors associated with MTB infection. ROC curve analysis demonstrated an AUC of 0.765, indicating good discriminatory performance. This study suggested that integrating wet-laboratory techniques with bioinformatics analysis can further enhance the diagnostic accuracy of mNGS for TB. Furthermore, microbiome analysis holds significant potential for the diagnosis of MTB infection.

IMPORTANCE

This study focuses on the application of next-generation sequencing (NGS) technology in detecting in bronchoalveolar lavage fluid and explores the impact of infection on the pulmonary microbiome. By optimizing the methods and conducting microbial analyses, the accuracy of metagenomic NGS for detecting has been improved.

摘要

未标记

本研究调查了宏基因组下一代测序(mNGS)在肺结核患者中检测结核分枝杆菌(MTB)的诊断潜力。我们分析了肺部微生物组数据,以评估其对mNGS诊断准确性的影响,并探讨微生物组谱与临床诊断之间的关联。收集了236例肺部感染患者的支气管肺泡灌洗液样本,并将mNGS的诊断性能与传统方法在检测MTB方面进行了比较。此外,分析了假阴性和假阳性的发生率以及结核病患者肺部微生物群的特征,以提高mNGS的诊断精度。我们观察到,在所有检测方法中,mNGS显示出最高的灵敏度(73.33%),其次是Xpert(60.00%)、培养(53.33%)、逆转录聚合酶链反应(RT-PCR)(53.33%)和痰涂片(23.33%)。值得注意的是,mNGS在236个样本中产生了3例假阳性结果,特异性为98.54%。肺部微生物组分析显示,结核病患者与未感染对照之间在α多样性和β多样性方面均存在显著差异(P<0.05)。香农指数和 Chao1指数被确定为与MTB感染相关的重要预测指标。ROC曲线分析显示曲线下面积(AUC)为0.765,表明具有良好的鉴别性能。本研究表明,将湿实验室技术与生物信息学分析相结合可以进一步提高mNGS对结核病的诊断准确性。此外,微生物组分析在MTB感染诊断方面具有巨大潜力。

重要性

本研究聚焦于下一代测序(NGS)技术在支气管肺泡灌洗液检测中的应用,并探讨MTB感染对肺部微生物组的影响。通过优化方法并进行微生物分析,提高了宏基因组NGS检测MTB的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验