Villalba-Díez Javier, González-Marcos Ana
Fakultät Wirtschaft, Hochschule Heilbronn, Max-Planck-Str. 39, 74081, Heilbronn, Baden-Württemberg, Germany.
Department of Mechanical Engineering, Universidad de La Rioja, Edificio Departamental, c/ San José de Calasanz, 31, 26004, Logroño, La Rioja, Spain.
Sci Rep. 2025 Jun 20;15(1):20204. doi: 10.1038/s41598-025-06359-1.
This study presents a novel hardware and software architecture combining capacitive sensors, quantum-inspired algorithms, and deep learning applied to the detection of Essential Tremor. At the core of this architecture are graphene-printed capacitive sensors, which provide a cost-effective and efficient solution for tremor data acquisition. These sensors, known for their flexibility and precision, are specifically calibrated to monitor tremor movements across various fingers. A distinctive feature of this study is the incorporation of quantum-inspired computational filters-namely, Quantvolution and QuantClass-into the deep learning framework. This integration offers improved processing capabilities, facilitating a more nuanced analysis of tremor patterns. Initial findings indicate greater stability in loss variability; however, further research is necessary to confirm these effects across broader datasets and clinical environments. The approach highlights a promising application of quantum-inspired methods within healthcare diagnostics.
本研究提出了一种新颖的硬件和软件架构,该架构将电容式传感器、量子启发算法和深度学习相结合,应用于原发性震颤的检测。该架构的核心是石墨烯印刷电容式传感器,它为震颤数据采集提供了一种经济高效的解决方案。这些传感器以其灵活性和精度而闻名,经过专门校准,可监测各个手指的震颤运动。本研究的一个显著特点是将量子启发的计算滤波器——即量子卷积(Quantvolution)和量子分类(QuantClass)——纳入深度学习框架。这种整合提供了改进的处理能力,有助于对震颤模式进行更细致入微的分析。初步研究结果表明损失变异性具有更高的稳定性;然而,需要进一步研究以在更广泛的数据集和临床环境中证实这些效果。该方法突出了量子启发方法在医疗诊断中的一个有前景的应用。