Suppr超能文献

在杜尔加布尔市区2型糖尿病患者中使用人工智能进行糖尿病视网膜病变筛查及其预测因素

Diabetic retinopathy screening using artificial intelligence and its predictors among people with type 2 diabetes mellitus in an urban area of Durgapur.

作者信息

Sarkar Poulami, Bandyopadhyay Sayanti, Kumar Rakesh, Roy Soumit

机构信息

Intern, IQ City Medical College and Hospital, Durgapur, West Bengal, India.

Community Medicine, IQ City Medical College and Hospital, Durgapur, West Bengal, India.

出版信息

J Family Med Prim Care. 2025 May;14(5):1871-1877. doi: 10.4103/jfmpc.jfmpc_1693_24. Epub 2025 May 31.

Abstract

INTRODUCTION

Diabetes mellitus (DM) is a metabolic disorder characterized by chronic hyperglycaemia either due to insulin resistance or due to relative or absolute insulin deficiency. Poorly controlled DM may result in both macrovascular and/or microvascular complications like diabetic retinopathy [DR]. Dilated eye examination is the most commonly employed method to diagnose DR. Nonmydriatic artificial intelligence [AI]-based technologies are the now available to screen DR.

METHODS

A cross-sectional observational study was conducted in urban field practice area of our medical college for 2 months duration. A total of 95 patients with type 2 DM were interviewed using predesigned, pretested semistructured schedule to collect data. Medical records were reviewed to collect relevant information. DR was screened using AI-based DR screening instrument, and venous blood sample was collected for glycated hemoglobin (HbA1C) testing. Data were analyzed using IBM SPSS [version 16]. Univariate and multivariate logistic regression tests were used, and value ≤ 0.05 was taken as statistically significant.

RESULTS

The prevalence of DR was 17.9% in our study. Around 76.9% respondents had high fasting blood glucose [FBG: ≥126 mg/dl], and majority of the respondents [73.7%] had HbA1C value >7%. DR was significantly associated with FBG level, longer duration of diabetes, presence of hypertension, dyslipidemia, and kidney disease in univariate logistic regression and, in multivariable logistic regression, FBG level, presence of dyslipidemia and kidney disease retained their significance.

CONCLUSION

This study had used AI-based DR screening instrument, to screen DR among T2DM patients. AI-based DR screening system can be encouraged in mass screening camps, especially in areas with inadequate number of ophthalmologists. This study also evaluated some important modifiable predictors of DR. Appropriate and early identification of such predictors may prevent DR-related blindness.

摘要

引言

糖尿病(DM)是一种代谢紊乱疾病,其特征为慢性高血糖,病因要么是胰岛素抵抗,要么是相对或绝对的胰岛素缺乏。糖尿病控制不佳可能导致大血管和/或微血管并发症,如糖尿病视网膜病变[DR]。散瞳眼部检查是诊断糖尿病视网膜病变最常用的方法。目前已有基于非散瞳人工智能[AI]的技术用于筛查糖尿病视网膜病变。

方法

在我们医学院的城市实地实践区域进行了为期2个月的横断面观察性研究。使用预先设计、预先测试的半结构化问卷对95例2型糖尿病患者进行访谈以收集数据。查阅病历以收集相关信息。使用基于人工智能的糖尿病视网膜病变筛查仪器进行筛查,并采集静脉血样进行糖化血红蛋白(HbA1C)检测。使用IBM SPSS[版本16]对数据进行分析。采用单因素和多因素逻辑回归检验,P值≤0.05被视为具有统计学意义。

结果

在我们的研究中,糖尿病视网膜病变的患病率为17.9%。约76.9%的受访者空腹血糖[FBG:≥126mg/dl]较高,大多数受访者(73.7%)的糖化血红蛋白值>7%。在单因素逻辑回归中,糖尿病视网膜病变与空腹血糖水平、糖尿病病程较长、高血压、血脂异常和肾脏疾病显著相关,在多因素逻辑回归中,空腹血糖水平、血脂异常和肾脏疾病的存在仍具有显著性。

结论

本研究使用基于人工智能的糖尿病视网膜病变筛查仪器,对2型糖尿病患者中的糖尿病视网膜病变进行筛查。在大规模筛查营地,尤其是眼科医生数量不足的地区,可以鼓励使用基于人工智能的糖尿病视网膜病变筛查系统。本研究还评估了糖尿病视网膜病变的一些重要可改变预测因素。适当且早期识别这些预测因素可能预防与糖尿病视网膜病变相关的失明。

相似文献

9
Glucose targets for preventing diabetic kidney disease and its progression.预防糖尿病肾病及其进展的血糖目标。
Cochrane Database Syst Rev. 2017 Jun 8;6(6):CD010137. doi: 10.1002/14651858.CD010137.pub2.
10
Treatment of periodontitis for glycaemic control in people with diabetes mellitus.糖尿病患者牙周炎治疗与血糖控制。
Cochrane Database Syst Rev. 2022 Apr 14;4(4):CD004714. doi: 10.1002/14651858.CD004714.pub4.

本文引用的文献

8
Risk factors for diabetic retinopathy: a case-control study.糖尿病视网膜病变的危险因素:一项病例对照研究。
Int J Retina Vitreous. 2016 Sep 12;2:21. doi: 10.1186/s40942-016-0047-6. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验