Suppr超能文献

自动更新关于人类和动物疾病环境驱动因素的综述:人工智能方法的比较分析

Automating updates for scoping reviews on the environmental drivers of human and animal diseases: a comparative analysis of AI methods.

作者信息

Decoupes Rémy, Cataldo Claudia, Busani Luca, Roche Mathieu, Teisseire Maguelonne

机构信息

Territoires, environnement, télédétection et information spatiale (TETIS), Univ. Montpellier, AgroParisTech, Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), CNRS, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Montpellier, France.

INRAE, Montpellier, France.

出版信息

Front Artif Intell. 2025 Jun 10;8:1526820. doi: 10.3389/frai.2025.1526820. eCollection 2025.

Abstract

Understanding the environmental factors that facilitate the occurrence and spread of infectious diseases in animals is crucial for risk prediction. As part of the H2020 Monitoring Outbreaks for Disease Surveillance in a Data Science Context (MOOD) project, scoping literature reviews have been conducted for various diseases. However, pathogens continuously mutate and generate variants with different sensitivities to these factors, necessitating regular updates to these reviews. In this paper, we propose to evaluate the potential benefits of artificial intelligence (AI) for updating such scoping reviews. We thus compare different combinations of AI methods for solving this task. These methods utilize generative large language models (LLMs) and lighter language models to automatically identify risk factors in scientific articles.

摘要

了解促进动物传染病发生和传播的环境因素对于风险预测至关重要。作为“数据科学背景下疾病监测的H2020监测疫情”(MOOD)项目的一部分,已针对各种疾病进行了文献综述。然而,病原体不断变异并产生对这些因素具有不同敏感性的变体,因此需要定期更新这些综述。在本文中,我们建议评估人工智能(AI)在更新此类综述方面的潜在益处。因此,我们比较了用于解决此任务的不同AI方法组合。这些方法利用生成式大语言模型(LLM)和更轻量级的语言模型来自动识别科学文章中的风险因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/935d/12186151/3e4980d27926/frai-08-1526820-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验