Decoupes Rémy, Cataldo Claudia, Busani Luca, Roche Mathieu, Teisseire Maguelonne
Territoires, environnement, télédétection et information spatiale (TETIS), Univ. Montpellier, AgroParisTech, Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), CNRS, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Montpellier, France.
INRAE, Montpellier, France.
Front Artif Intell. 2025 Jun 10;8:1526820. doi: 10.3389/frai.2025.1526820. eCollection 2025.
Understanding the environmental factors that facilitate the occurrence and spread of infectious diseases in animals is crucial for risk prediction. As part of the H2020 Monitoring Outbreaks for Disease Surveillance in a Data Science Context (MOOD) project, scoping literature reviews have been conducted for various diseases. However, pathogens continuously mutate and generate variants with different sensitivities to these factors, necessitating regular updates to these reviews. In this paper, we propose to evaluate the potential benefits of artificial intelligence (AI) for updating such scoping reviews. We thus compare different combinations of AI methods for solving this task. These methods utilize generative large language models (LLMs) and lighter language models to automatically identify risk factors in scientific articles.
了解促进动物传染病发生和传播的环境因素对于风险预测至关重要。作为“数据科学背景下疾病监测的H2020监测疫情”(MOOD)项目的一部分,已针对各种疾病进行了文献综述。然而,病原体不断变异并产生对这些因素具有不同敏感性的变体,因此需要定期更新这些综述。在本文中,我们建议评估人工智能(AI)在更新此类综述方面的潜在益处。因此,我们比较了用于解决此任务的不同AI方法组合。这些方法利用生成式大语言模型(LLM)和更轻量级的语言模型来自动识别科学文章中的风险因素。