Guo Mingqian, Ikink Iris, Roelofs Karin, Figner Bernd
Behavioural Science Institute, Radboud University, Thomas Van Aquinostraat 4, 6525GD, Nijmegen, The Netherlands.
Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
Psychon Bull Rev. 2025 Jun 25. doi: 10.3758/s13423-025-02709-2.
Intertemporal choices constitute a significant topic of interest in both psychological and behavioral-economics research. While many studies focus on decisions with precisely known reward delivery times, real-world situations typically involve only an imprecise knowledge of these timings (i.e., the delivery times are ambiguous). The current study uses a large size dataset (sample size N > 669) consisting of both risky and intertemporal ambiguous and nonambiguous choices and aims (i) to clarify the relationship between probability-ambiguity and time-ambiguity effects on choice, and (ii) to evaluate different computational models (attribute-wise and integrated-value models) across risky and intertemporal choice domains using a drift-diffusion model (DDM) framework. Analysis of the choice data revealed a significant association: Individuals who were more averse to time ambiguity also exhibited a stronger aversion to probability ambiguity, as indicated by a correlation of r = .28. The DDM analyses revealed that (i) DDMs incorporating ambiguity preferences outperformed models without ambiguity preferences in both the time and probability domain for most participants. Interestingly, (ii) while time-ambiguity aversion was best explained by an attribute-wise model, probability-ambiguity aversion was best explained by an integrated-value model. Finally, we found that (iii) if an individual's intertemporal decisions were best explained by a DDM incorporating ambiguity, then their risky decisions were also most likely best explained by a DDM incorporating ambiguity.Taken together, our results are evidence that ambiguity preferences across the time and probability domains are not independent but show some consistency despite the differing-attribute-wise versus integrated-value-decision strategies in each domain.
跨期选择是心理学和行为经济学研究中一个重要的感兴趣话题。虽然许多研究聚焦于奖励交付时间精确已知的决策,但现实世界的情况通常只涉及对这些时间的不精确了解(即交付时间是模糊的)。当前的研究使用了一个大型数据集(样本量N > 669),该数据集包含有风险的、跨期模糊和非模糊的选择,并旨在:(i)阐明概率模糊和时间模糊对选择的影响之间的关系,以及(ii)使用漂移扩散模型(DDM)框架评估跨风险和跨期选择领域的不同计算模型(属性明智模型和综合价值模型)。对选择数据的分析揭示了一种显著的关联:更厌恶时间模糊的个体也表现出更强的概率模糊厌恶,相关系数r = 0.28表明了这一点。DDM分析表明:(i)对于大多数参与者来说,纳入模糊偏好的DDM在时间和概率领域都优于没有模糊偏好的模型。有趣的是,(ii)虽然时间模糊厌恶最好由属性明智模型解释,但概率模糊厌恶最好由综合价值模型解释。最后,我们发现:(iii)如果个体的跨期决策最好由纳入模糊性的DDM解释,那么他们的风险决策也最有可能最好由纳入模糊性的DDM解释。综上所述,我们的结果证明,跨时间和概率领域的模糊偏好不是独立的,尽管每个领域在属性明智与综合价值决策策略上存在差异,但仍表现出一定的一致性。
Cochrane Database Syst Rev. 2023-11-28
Cochrane Database Syst Rev. 2022-5-20
Cochrane Database Syst Rev. 2022-4-4
Cochrane Database Syst Rev. 2022-1-17
Cochrane Database Syst Rev. 2017-12-22
Evid Rep Technol Assess (Full Rep). 2009-3
Cochrane Database Syst Rev. 2021-4-19
Health Technol Assess. 2006-9
Cogn Psychol. 2023-5
Curr Opin Behav Sci. 2021-10
Nat Hum Behav. 2021-10
Psychol Rev. 2021-1
Neuropsychologia. 2019-11-14
PLoS Comput Biol. 2019-8-29
Cognition. 2019-7-29