Suppr超能文献

基于扫描仪的 MS 自动病灶分割的优化。

Scanner-specific optimisation of automated lesion segmentation in MS.

机构信息

MS Center Amsterdam, Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands.

MS Center Amsterdam, Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands; Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, UK.

出版信息

Neuroimage Clin. 2024;44:103680. doi: 10.1016/j.nicl.2024.103680. Epub 2024 Oct 2.

Abstract

BACKGROUND & OBJECTIVE: Automatic lesion segmentation techniques on MRI scans of people with multiple sclerosis (pwMS) could support lesion detection and segmentation in trials and clinical practice. However, knowledge on their reliability across scanners is limited, hampering clinical implementation. The aim of this study was to investigate the within-scanner repeatability and between-scanner reproducibility of lesion segmentation tools in pwMS across three different scanners and examine their accuracy compared to manual segmentations with and without optimization.

METHODS

30 pwMS underwent a scan and rescan on three MRI scanners. GE Discovery MR750 (3.0 T), Siemens Sola (1.5 T) and Siemens Vida (3.0 T)). 3D-FLuid Attenuated Inversion Recovery (3D-FLAIR) and 3D T1-weighted scans were acquired on each scanner. Lesion segmentation involved preprocessing and automatic segmentation using the Lesion Segmentation Toolbox (LST) and nicMSlesions (nicMS) as well as manual segmentation. Both automated segmentation techniques were used with default settings, and with settings optimized to match manual segmentations for each scanner specifically and combined for the three scanners. LST settings were optimized by adjusting the threshold to improve the Dice similarity coefficient (DSC) for each scanner separately and a combined threshold for all scanners. For nicMS the last layers were retrained, once with the multi-scanner data to represent a combined optimization and once separately for each scanner for scanner specific optimization. Volumes and counts were extracted. DSC was calculated for accuracy, and reliability was assessed using intra-class correlation coefficients (ICC). Differences in DSC between software was tested with a repeated measures ANOVA and when appropriate post-hoc paired t-tests using Bonferroni correction.

RESULTS

Scanner-specific optimization significantly improved DSC for LST compared to default and combined settings, except for the GE scanner. NicMS showed significantly higher DSC for both the scanner-specific and combined optimization than default. Within-scanner repeatability was excellent (ICC>0.9) for volume and counts. Between-scanner ICC for volume between Vida and Sola was higher (0.94-0.99) than between GE MR750 and Vida or Sola (0.18-0.93), with improved ICCs for nicMS scanner-specific (0.87-0.93) compared to others (0.18-0.79). This was not present for Sola vs. Vida where all ICCs were excellent (>0.94).

CONCLUSION

Scanner-specific optimization strategies proved effective in mitigating inter-scanner variability, addressing the issue of insufficient reproducibility and accuracy found with default settings.

摘要

背景与目的

磁共振成像(MRI)扫描中多发性硬化症(pwMS)患者的自动病变分割技术可以支持临床试验和临床实践中的病变检测和分割。然而,关于其在不同扫描仪之间的可靠性的知识有限,阻碍了临床应用。本研究的目的是调查不同扫描仪中 pwMS 的病变分割工具的扫描仪内重复性和扫描仪间可重复性,并比较其与手动分割(优化和未优化)的准确性。

方法

30 名 pwMS 在三台 MRI 扫描仪上进行扫描和重扫。GE Discovery MR750(3.0 T)、Siemens Sola(1.5 T)和 Siemens Vida(3.0 T)。在每台扫描仪上采集 3D-FLuid Attenuated Inversion Recovery(3D-FLAIR)和 3D T1 加权扫描。病变分割涉及预处理和使用病变分割工具箱(LST)和 nicMSlesions(nicMS)的自动分割,以及手动分割。两种自动分割技术都使用默认设置,以及针对每个扫描仪专门进行优化的设置,以及针对三个扫描仪进行组合优化的设置。通过调整阈值来提高每个扫描仪的骰子相似系数(DSC)来优化 LST 设置,以及为所有扫描仪优化的组合阈值。对于 nicMS,最后一层使用多扫描仪数据进行了重新训练,一次是为了表示组合优化,一次是为了针对每个扫描仪进行扫描仪特定的优化。提取体积和计数。计算 DSC 以评估准确性,并使用组内相关系数(ICC)评估可靠性。使用重复测量方差分析和适当的事后配对 t 检验(使用 Bonferroni 校正)测试软件之间的 DSC 差异。

结果

与默认和组合设置相比,扫描仪特定的优化显著提高了 LST 的 DSC,除了 GE 扫描仪。nicMS 显示出明显高于默认的扫描仪特定和组合优化的 DSC。体积和计数的扫描仪内重复性极好(ICC>0.9)。Vida 和 Sola 之间的体积之间的扫描仪间 ICC 高于 GE MR750 和 Vida 或 Sola 之间的体积(0.18-0.93),nicMS 扫描仪特定的 ICC 更高(0.87-0.93)与其他 ICC(0.18-0.79)相比。Sola 与 Vida 之间不存在这种情况,因为所有 ICC 都非常好(>0.94)。

结论

扫描仪特定的优化策略被证明可以有效缓解扫描仪间的变异性,解决了默认设置下发现的可重复性和准确性不足的问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0304/11492079/bacc5f6ed33c/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验