Lee Jea Woog, Song Sangmin, Yun JungMin, Han Doug Hyun, Kim YoungBin
College of Sport Sciences, Chung-Ang University, Ansoeng, Republic of South Korea.
Department of Artificial Intelligence, Chung-Ang University, Seoul, Republic of South Korea.
PeerJ Comput Sci. 2025 Jun 19;11:e2919. doi: 10.7717/peerj-cs.2919. eCollection 2025.
We investigate the convergence of sports and emerging technologies from the Fourth Industrial Revolution, with a focus on virtual reality (VR) applications. Using patent big data, we introduce SportsBERT, a bidirectional encoder representation from transformers (BERT)-based algorithm tailored for enhanced natural language processing in sports-related knowledge-based documents. Through topic modeling, we extract key themes and clusters from sports-related VR patents, providing insights into the knowledge structure and technological trends in VR applications for sports. Our analysis identifies key drivers of technological advancement, including spatial hardware, tactile human-computer interactions, aerobic exercise, rehabilitation, and swing sports. Additionally, we highlight challenges such as the high cost and usability limitations of current VR devices. This study presents the first deep learning-based topic modeling approach specialized for sports patents and offers a comprehensive roadmap for current developments and future trajectories in VR sports technologies.
我们研究了第四次工业革命中体育与新兴技术的融合,重点关注虚拟现实(VR)应用。利用专利大数据,我们引入了SportsBERT,这是一种基于变换器(Transformer)的双向编码器表示(BERT)算法,专为增强体育相关知识文档中的自然语言处理而定制。通过主题建模,我们从体育相关的VR专利中提取关键主题和聚类,深入了解VR在体育应用中的知识结构和技术趋势。我们的分析确定了技术进步的关键驱动因素,包括空间硬件、触觉人机交互、有氧运动、康复和挥杆运动。此外,我们还强调了当前VR设备成本高和可用性有限等挑战。本研究提出了第一种专门针对体育专利的基于深度学习的主题建模方法,并为VR体育技术的当前发展和未来轨迹提供了全面的路线图。