Suppr超能文献

一种基于动态多窗口注意力和元迁移学习的新型7×24小时断线检测与分割框架

A Novel 24 h × 7 Days Broken Wire Detection and Segmentation Framework Based on Dynamic Multi-Window Attention and Meta-Transfer Learning.

作者信息

Wu Han, Xiong Shiyu, Lin Yunhan

机构信息

School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan 430081, China.

Hubei Province Key Laboratory of Intelligent Information Processing and Real-Time Industrial System, Wuhan University of Science and Technology, Wuhan 430081, China.

出版信息

Sensors (Basel). 2025 Jun 13;25(12):3718. doi: 10.3390/s25123718.

Abstract

Detecting and segmenting damaged wires in substations is challenging due to varying lighting conditions and limited annotated data, which degrade model accuracy and robustness. In this paper, a novel 24 h × 7 days broken wire detection and segmentation framework based on dynamic multi-window attention and meta-transfer learning is proposed, comprising a low-light image enhancement module, an improved detection and segmentation network with dynamic multi-scale window attention (DMWA) based on YOLOv11n, and a multi-stage meta-transfer learning strategy to support small-sample training while mitigating negative transfer. An RGB dataset of 3760 images is constructed, and performance is evaluated under six lighting conditions ranging from 10 to 200,000 lux. Experimental results demonstrate that the proposed framework markedly improves detection and segmentation performance, as well as robustness across varying lighting conditions.

摘要

由于光照条件变化和标注数据有限,检测和分割变电站中的受损电线具有挑战性,这会降低模型的准确性和鲁棒性。本文提出了一种基于动态多窗口注意力和元迁移学习的新型7×24小时断丝检测与分割框架,该框架包括一个低光图像增强模块、一个基于YOLOv11n的具有动态多尺度窗口注意力(DMWA)的改进检测与分割网络,以及一个多阶段元迁移学习策略,以支持小样本训练并减轻负迁移。构建了一个包含3760张图像的RGB数据集,并在10至200000勒克斯的六种光照条件下评估性能。实验结果表明,所提出的框架显著提高了检测和分割性能,以及在不同光照条件下的鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01e1/12196551/b6561b7ccc56/sensors-25-03718-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验