Suppr超能文献

优化大流行控制中的隔离措施:一种用于新冠病毒传播动力学的多阶段SEIQR建模方法

Optimizing quarantine in pandemic control: a multi-stage SEIQR modeling approach to COVID-19 transmission dynamics.

作者信息

Siddig Nawal H, Al-Essa Laila A

机构信息

Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.

出版信息

BMC Infect Dis. 2025 Jul 1;25(1):877. doi: 10.1186/s12879-025-11253-2.

Abstract

This study develops and applies an advanced SEIQR (Susceptible-Exposed-Infectious-Quarantined-Removed) model to explore the intricate dynamics of COVID-19 transmission. By incorporating a quarantined compartment into traditional epidemiological frameworks, the model offers a comprehensive examination of how isolation protocols affect pandemic progression. Key parameters such as infection rates, incubation periods, and quarantine durations are systematically analyzed to quantify their influence on the basic reproduction number (ℛ₀) and pandemic trajectory. Simulations reveal that timely and stringent quarantine interventions can reduce peak caseloads by up to 30%, delaying outbreak surges and alleviating pressure on healthcare systems. The model’s robustness is validated against empirical data, confirming its suitability as a predictive and policy-supporting tool. This research not only emphasizes the vital role of quarantine in public health management but also sets a foundational precedent for modeling future outbreaks with similar transmission profiles.

摘要

本研究开发并应用了一种先进的SEIQR(易感-暴露-感染-隔离-康复)模型,以探究新冠病毒传播的复杂动态。通过将隔离 compartment 纳入传统流行病学框架,该模型全面考察了隔离措施如何影响疫情发展。系统分析了诸如感染率、潜伏期和隔离时长等关键参数,以量化它们对基本再生数(ℛ₀)和疫情轨迹的影响。模拟结果显示,及时且严格的隔离干预措施可将病例峰值减少多达30%,延缓疫情高峰并减轻医疗系统压力。该模型的稳健性通过实证数据得到验证,证实了其作为预测和政策支持工具的适用性。本研究不仅强调了隔离在公共卫生管理中的重要作用,还为模拟具有类似传播特征的未来疫情树立了基础性先例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6995/12220114/1fab6488c91f/12879_2025_11253_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验