Suppr超能文献

具有层次化图形表示的基于Transformer的模型用于增强气候预测。

Transformer based models with hierarchical graph representations for enhanced climate forecasting.

作者信息

Ramu T Bhargava, Kocherla Raviteja, Sirisha G N V G, Chetana V Lakshmi, Sagar P Vidya, Balamurali R, Boddu Nanditha

机构信息

Department of Electrical and Electronics Engineering, MLR Institute of Technology, Hyderabad, 500043, Telangana, India.

Department of Computer Science and Engineering, Malla Reddy University, Hyderabad, 500043, India.

出版信息

Sci Rep. 2025 Jul 2;15(1):23464. doi: 10.1038/s41598-025-07897-4.

Abstract

Accurate climate predictions are essential for agriculture, urban planning, and disaster management. Traditional forecasting methods often struggle with regional accuracy, computational demands, and scalability. This study proposes a Transformer-based deep learning model for daily temperature forecasting, utilizing historical climate data from Delhi (2013-2017, consisting of 1,500 daily records). The model integrates three key components: Spatial-Temporal Fusion Module (STFM) to capture spatiotemporal dependencies, Hierarchical Graph Representation and Analysis (HGRA) to model structured climate relationships, and Dynamic Temporal Graph Attention Mechanism (DT-GAM) to enhance temporal feature extraction. To improve computational efficiency and feature selection, we introduce a hybrid optimization approach (HWOA-TTA) that combines the Whale Optimization Algorithm (WOA) and Tiki-Taka Algorithm (TTA). Experimental results demonstrate that the proposed model outperforms baseline models (RF-LSTM-XGBoost, cGAN, CNN + LSTM, and MC-LSTM) by achieving 7.8% higher accuracy, 6.3% improvement in recall, and 8.1% enhancement in F1-score. Additionally, training time is reduced by 22.4% compared to conventional deep learning models, demonstrating improved computational efficiency. These findings highlight the effectiveness of hierarchical graph-based deep learning models for scalable and accurate climate forecasting. Future work will focus on validating the model across diverse climatic regions and enhancing real-time deployment feasibility.

摘要

准确的气候预测对农业、城市规划和灾害管理至关重要。传统的预测方法在区域准确性、计算需求和可扩展性方面往往面临挑战。本研究提出了一种基于Transformer的深度学习模型用于每日温度预测,利用德里2013 - 2017年的历史气候数据(包含1500条每日记录)。该模型集成了三个关键组件:用于捕捉时空依赖性的时空融合模块(STFM)、用于对结构化气候关系进行建模的层次图表示与分析(HGRA)以及用于增强时间特征提取的动态时间图注意力机制(DT - GAM)。为了提高计算效率和特征选择,我们引入了一种结合鲸鱼优化算法(WOA)和蒂基 - 塔卡算法(TTA)的混合优化方法(HWOA - TTA)。实验结果表明,所提出的模型优于基线模型(随机森林 - 长短期记忆网络 - 极端梯度提升、条件生成对抗网络、卷积神经网络 + 长短期记忆网络和多通道长短期记忆网络),准确率提高了7.8%,召回率提高了6.3%,F1分数提高了8.1%。此外,与传统深度学习模型相比,训练时间减少了22.4%,证明了计算效率的提高。这些发现突出了基于层次图的深度学习模型在可扩展且准确的气候预测方面的有效性。未来的工作将集中在跨不同气候区域验证该模型并提高实时部署的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29b9/12222477/62e6e1e4f67c/41598_2025_7897_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验