Kist Andreas M, Razi Sina, Groh René, Gritsch Florian, Schützenberger Anne
Department Artificial Intelligence in Biomedical Engineering (AIBE), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Bavaria, Germany.
Division Phoniatrics and Pediatric Audiology, Department Otolaryngology, Head- and Neck-Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Bavaria, Germany.
PLoS One. 2025 Jul 3;20(7):e0314573. doi: 10.1371/journal.pone.0314573. eCollection 2025.
Endoscopy is a major tool for assessing the physiology of inner organs. Contemporary artificial intelligence methods are used to fully automatically label medical important classes on a pixel-by-pixel level. This so-called semantic segmentation is for example used to detect cancer tissue or to assess laryngeal physiology. However, due to the diversity of patients presenting, it is necessary to judge the segmentation quality. In this study, we present a fully automatic system to evaluate the segmentation performance in laryngeal endoscopy images. We showcase on glottal area segmentation that the predicted segmentation quality represented by the intersection over union metric is on par with human raters. Using a traffic light system, we are able to identify problematic segmentation frames to allow human-in-the-loop improvements, important for the clinical adaptation of automatic analysis procedures.
内窥镜检查是评估内脏器官生理状况的主要工具。当代人工智能方法被用于在逐像素级别上全自动标记医学上重要的类别。这种所谓的语义分割例如被用于检测癌组织或评估喉部生理状况。然而,由于患者表现的多样性,有必要判断分割质量。在本研究中,我们提出了一个全自动系统来评估喉镜检查图像中的分割性能。我们在声门区域分割方面展示,由交并比指标表示的预测分割质量与人类评分者相当。通过使用交通灯系统,我们能够识别有问题的分割帧,以实现人工参与的改进,这对于自动分析程序的临床应用很重要。