Department of Electrical Engineering, Stanford, United States.
Department of Neurosurgery, Stanford, United States.
Elife. 2024 Nov 7;13:e83424. doi: 10.7554/eLife.83424.
Neural implants have the potential to restore lost sensory function by electrically evoking the complex naturalistic activity patterns of neural populations. However, it can be difficult to predict and control evoked neural responses to simultaneous multi-electrode stimulation due to nonlinearity of the responses. We present a solution to this problem and demonstrate its utility in the context of a bidirectional retinal implant for restoring vision. A dynamically optimized stimulation approach encodes incoming visual stimuli into a rapid, greedily chosen, temporally dithered and spatially multiplexed sequence of simple stimulation patterns. Stimuli are selected to optimize the reconstruction of the visual stimulus from the evoked responses. Temporal dithering exploits the slow time scales of downstream neural processing, and spatial multiplexing exploits the independence of responses generated by distant electrodes. The approach was evaluated using an experimental laboratory prototype of a retinal implant: large-scale, high-resolution multi-electrode stimulation and recording of macaque and rat retinal ganglion cells ex vivo. The dynamically optimized stimulation approach substantially enhanced performance compared to existing approaches based on static mapping between visual stimulus intensity and current amplitude. The modular framework enabled parallel extensions to naturalistic viewing conditions, incorporation of perceptual similarity measures, and efficient implementation for an implantable device. A direct closed-loop test of the approach supported its potential use in vision restoration.
神经植入物有可能通过电刺激引发神经群体复杂的自然活动模式,从而恢复失去的感觉功能。然而,由于响应的非线性,同时对多个电极进行刺激时,预测和控制诱发的神经响应可能会很困难。我们提出了一种解决此问题的方法,并在用于恢复视力的双向视网膜植入物的背景下证明了其效用。一种动态优化的刺激方法将传入的视觉刺激编码为快速、贪婪选择、时间抖动和空间复用的简单刺激模式的序列。刺激的选择是为了从诱发的响应中优化视觉刺激的重建。时间抖动利用了下游神经处理的慢时间尺度,而空间复用则利用了由远距离电极产生的响应的独立性。该方法使用视网膜植入物的实验实验室原型进行了评估:猕猴和大鼠视网膜神经节细胞的大规模、高分辨率多电极刺激和记录。与基于视觉刺激强度和电流幅度之间的静态映射的现有方法相比,动态优化刺激方法大大提高了性能。该模块化框架能够实现对自然观看条件的并行扩展,纳入感知相似性度量,并为可植入设备实现高效实现。该方法的直接闭环测试支持其在视觉恢复中的潜在用途。