Suppr超能文献

放射治疗后的经皮冠状动脉介入治疗死亡率、成本、并发症及差异:人工智能增强、成本效益及计算伦理分析

Percutaneous Coronary Intervention Mortality, Cost, Complications, and Disparities after Radiation Therapy: Artificial Intelligence-Augmented, Cost Effectiveness, and Computational Ethical Analysis.

作者信息

Monlezun Dominique J

机构信息

Department of Cardiology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.

Center for Artificial Intelligence & Health Equities, Global System Analytics & Structures (GSAS), New Orleans, LA 70112, USA.

出版信息

J Cardiovasc Dev Dis. 2023 Oct 30;10(11):445. doi: 10.3390/jcdd10110445.

Abstract

The optimal cardio-oncology management of radiation therapy and its complications are unknown despite the high patient and societal costs. This study is the first known nationally representative, multi-year, artificial intelligence and propensity score-augmented causal clinical inference and computational ethical and policy analysis of percutaneous coronary intervention (PCI) mortality, cost, and disparities including by primary malignancy following radiation therapy. Bayesian Machine learning-augmented Propensity Score translational (BAM-PS) statistics were conducted in the 2016-2020 National Inpatient Sample. Of the 148,755,036 adult hospitalizations, 2,229,285 (1.50%) had a history of radiation therapy, of whom, 67,450 (3.00%) had an inpatient AMI, and of whom, 18,400 (28.69%) underwent PCI. Post-AMI mortality, costs, and complications were comparable with and without radiation across cancers in general and across the 30 primary malignancies tested, except for breast cancer, in which PCI significantly increased mortality (OR 3.70, 95%CI 1.10-12.43, = 0.035). In addition to significant sex, race, and insurance disparities, significant regional disparities were associated with nearly 50 extra inpatient deaths and over USD 500 million lost. This large clinical, cost, and pluralistic ethical analysis suggests PCI when clinically indicated should be provided to patients regardless of sex, race, insurance, or region to generate significant improvements in population health, cost savings, and social equity.

摘要

尽管给患者和社会带来了高昂成本,但放射治疗及其并发症的最佳心脏肿瘤管理方案仍不明确。本研究是首个全国代表性的、多年期的、采用人工智能和倾向评分增强因果临床推理以及对经皮冠状动脉介入治疗(PCI)死亡率、成本和差异(包括放疗后的原发性恶性肿瘤差异)进行计算伦理和政策分析的研究。在2016 - 2020年全国住院患者样本中进行了贝叶斯机器学习增强倾向评分转换(BAM - PS)统计。在148,755,036例成人住院病例中,2,229,285例(1.50%)有放疗史,其中67,450例(3.00%)发生住院急性心肌梗死(AMI),其中18,400例(28.69%)接受了PCI。总体而言,在所有癌症以及所测试的30种原发性恶性肿瘤中,AMI后放疗组与未放疗组的死亡率、成本和并发症相当,但乳腺癌除外,乳腺癌患者接受PCI后死亡率显著增加(OR 3.70,95%CI 1.10 - 12.43,P = 0.035)。除了显著的性别、种族和保险差异外,显著的地区差异还导致了近50例额外的住院死亡和超过5亿美元的损失。这项大规模的临床、成本和多元伦理分析表明,无论性别、种族、保险或地区如何,临床指征明确时应给予患者PCI治疗,以显著改善人群健康、节省成本并促进社会公平。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d237/10672341/c607be98b9fc/jcdd-10-00445-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验