Ganter Alissa, Gabrielli Paolo, Goericke Hanne, Sansavini Giovanni
Institute of Energy and Process Engineering, Zürich 8092, Switzerland.
RWTH Aachen University, Aachen 52062, North Rhine-Westphalia,Germany.
Environ Sci Technol. 2025 Jul 22;59(28):14372-14387. doi: 10.1021/acs.est.4c13659. Epub 2025 Jul 11.
Low-carbon hydrogen (H) is envisioned to play a central role in decarbonizing European hard-to-abate industries, such as refineries, ammonia, methanol, steel, and cement. To facilitate its widespread use, low-carbon H supply chain (HSC) infrastructure is needed. However, uncertainties around future low-carbon H demands and biomass availability hamper their proliferation. This work investigates the impact of uncertainties in H demand and biomass availability on the optimal HSC design. A linear optimization model is used to determine the cost-optimal HSC design, considering a regional spatial resolution and a multiyear time horizon from 2022 to 2050. CO and biomass infrastructure is designed alongside the HSC. A scenario-based approach is used to derive minimum-regret strategies and support infrastructure development. Results show that investing in scalable H production capacity, targeting 10 Mt/a by 2030, enables flexible expansion to meet larger H demands of up to 35 Mt/a by 2050. Although biomass-based H production is most cost-effective, coupling conventional H production with carbon capture and storage or investments in electrolysis provide more flexibility. Moreover, investments in CO infrastructure are essential, often determining the ability to achieve 2050 climate targets.
低碳氢(H)有望在欧洲难以减排的行业脱碳过程中发挥核心作用,这些行业包括炼油厂、氨、甲醇、钢铁和水泥行业。为促进其广泛应用,需要低碳氢供应链(HSC)基础设施。然而,未来低碳氢需求和生物质可用性的不确定性阻碍了它们的扩散。这项工作研究了氢需求和生物质可用性的不确定性对最优氢供应链设计的影响。使用线性优化模型来确定成本最优的氢供应链设计,考虑区域空间分辨率和从2022年到2050年的多年时间范围。同时设计了与氢供应链配套的一氧化碳和生物质基础设施。采用基于情景的方法来推导最小遗憾策略并支持基础设施发展。结果表明,投资建设到2030年目标产量为1000万吨/年的可扩展氢生产能力,能够灵活扩展以满足到2050年高达3500万吨/年的更大氢需求。虽然基于生物质的氢生产最具成本效益,但将传统氢生产与碳捕获和存储相结合或投资于电解能提供更大的灵活性。此外,对一氧化碳基础设施的投资至关重要,它往往决定能否实现2050年的气候目标。