Suppr超能文献

考虑能源市场的、含可再生能源和储能单元的能源枢纽的电-热智能电网双层能量调度

Two-layer energy scheduling of electrical and thermal smart grids with energy hubs including renewable and storage units considering energy markets.

作者信息

Aich Walid, Basem Ali, Sawaran Singh Narinderjit Singh, Mausam Kuwar, Hussein Zahraa Abed, Dixit Saurav, Ali Naim Ben, Said Lotfi Ben, Rajhi Wajdi, Mostafazadeh Loghman

机构信息

Department of Mechanical Engineering, College of Engineering, University of Ha'il, 81451, Ha'il, Saudi Arabia.

Faculty of Engineering, Warith Al-Anbiyaa University, Karbala, 56001, Iraq.

出版信息

Sci Rep. 2025 Jul 11;15(1):25079. doi: 10.1038/s41598-025-09960-6.

Abstract

This paper presents a two-layer energy management method designed for the operation of hubs within electrical and thermal smart grids. These energy hubs actively participate in both day-ahead and real time energy markets. Two-layer approach involves coordination at two distinct levels. In the first layer, the focus is on managing sources and storage equipment in collaboration with the hub operator. In the second layer, attention shifts to the interaction between the hub operator and the grid operator. The framework follows a two-stage formulation, where the first stage addresses the day-ahead operation model and the second stage pertains to real-time scheduling. In the first stage, a bi-level optimization strategy is employed. The upper level seeks to minimize the energy cost of smart grids while adhering to optimal power flow constraints, whereas the lower level aims to maximize hubs' profit in the day-ahead energy market subject to the operational constraints of sources and storage systems represented in an energy hub model. The second stage mirrors this problem structure but uses a smaller time step and adopts the flexibility cost minimization as objective for the upper level. To simplify the bi-level optimization problem into a single-objective model, the Karush-Kuhn-Tucker (KKT) method is applied. Uncertainties of load, price of market, and renewable energy generation are modeled using the unscented transformation technique. Problem-solving is undertaken using a hybrid optimization solver that combines artificial bee colony and honey-bee mating optimization methods. Simulation results highlight the effectiveness of this approach, demonstrating its capability to enhance both economic and technical performance. Specifically, hubs achieve significant profitability and operational flexibility, leading to an 18% improvement in economic performance and a 18-27% enhancement in operational efficiency compared to traditional power flow studies.

摘要

本文提出了一种针对电气和热智能电网中的枢纽运行而设计的两层能量管理方法。这些能量枢纽积极参与日前和实时能源市场。两层方法涉及两个不同层面的协调。在第一层,重点是与枢纽运营商合作管理能源源和存储设备。在第二层,关注点转移到枢纽运营商与电网运营商之间的交互。该框架采用两阶段公式化,其中第一阶段解决日前运行模型,第二阶段涉及实时调度。在第一阶段,采用双层优化策略。上层旨在在遵守最优潮流约束的同时使智能电网的能源成本最小化,而下层旨在在能源枢纽模型所表示的能源源和存储系统的运行约束下,使枢纽在日前能源市场中的利润最大化。第二阶段反映了这个问题结构,但使用更小的时间步长,并以上层的灵活性成本最小化为目标。为了将双层优化问题简化为单目标模型,应用了Karush-Kuhn-Tucker(KKT)方法。使用无迹变换技术对负荷、市场价格和可再生能源发电中的不确定性进行建模。使用结合了人工蜂群和蜜蜂交配优化方法的混合优化求解器来解决问题。仿真结果突出了该方法的有效性,证明了其增强经济和技术性能的能力。具体而言,与传统潮流研究相比,枢纽实现了显著的盈利能力和运行灵活性,经济性能提高了18%,运行效率提高了18 - 27%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ebc/12254230/83cfed10b979/41598_2025_9960_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验