Suppr超能文献

退休过渡期间的幸福感轨迹与动态资源转移:一项针对台湾老年人的纵向研究。

Well-being trajectories and dynamic resource shifts in the transitions of retirement: a longitudinal study of Taiwanese older adults.

作者信息

Hsu Wan-Chen, Huang Nuan-Ching, Hu Susan C

机构信息

Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan.

Department of Public Health, College of Health Care and Management, Chung Shan Medical University, Taichung, Taiwan.

出版信息

Front Psychol. 2025 Jun 27;16:1449442. doi: 10.3389/fpsyg.2025.1449442. eCollection 2025.

Abstract

BACKGROUND

Previous literature highlights the heterogeneity of retirement adjustment, emphasizing various life experiences among retirees. The Dynamic Resource-Based Model provides an integrated framework to examine these differences, linking retirement adjustment to subjective well-being. This study applied the framework to Taiwan's unique sociocultural context, in which distinct cultural values and retirement policies may create different adaptation patterns from those observed in Western societies. Thus, the main purposes of the study are to examine the heterogeneity in subjective well-being trajectories among Taiwanese retirees and focus on how various resources influence these diverse adaptation patterns within this specific cultural environment.

METHOD

This study utilized six waves of datasets from the Taiwanese Longitudinal Study on Aging (TLSA) spanning from 1996 to 2015, with 1,329 valid participants aged 50 and above in the analysis. Retirement was defined as the initiation of pension receipt during the observation period. Subjective well-being was measured using a 10-item Life Satisfaction Index. We first employed a Latent Growth Mixture Model (LGMM) to identify distinct trajectories of subjective well-being. Then, we applied the generalized linear model (GLM) to examine how physical, financial, cognitive, emotional, and social resources influence these trajectories across the following three stages: pre-retirement, transition, and post-retirement.

RESULTS

Our findings revealed two main trajectories of subjective well-being during retirement: a "High-Increase" group and a "Low-Decline" group. Compared with the "Low-Decline" group, individuals in the "High-Increase" group exhibited better health, stronger economic status, greater social participation, more family support, and higher educational attainment. In addition, older adults with fewer illnesses, healthier behaviors, and a spouse/partner were more likely to maintain a high-increased well-being trajectory during the transition to retirement. Our findings further showed the critical importance of volunteering in enhancing subjective well-being after retirement.

DISCUSSION

This study highlights the importance of understanding distinct well-being trajectories and how resources differently influence retirement stages in Taiwan's unique context. Policymakers should recognize this heterogeneity rather than implementing one-size-fits-all solutions. Given the crucial role of family support in early retirement and the growing importance of volunteering later, policies should strengthen family systems while expanding social participation opportunities.

摘要

背景

以往文献强调退休适应的异质性,着重指出退休人员的各种生活经历。基于资源的动态模型提供了一个综合框架来审视这些差异,将退休适应与主观幸福感联系起来。本研究将该框架应用于台湾独特的社会文化背景,在这种背景下,独特的文化价值观和退休政策可能会产生与西方社会不同的适应模式。因此,本研究的主要目的是考察台湾退休人员主观幸福感轨迹的异质性,并关注在这一特定文化环境中各种资源如何影响这些不同的适应模式。

方法

本研究使用了台湾老年纵向研究(TLSA)1996年至2015年期间的六波数据集,分析中纳入了1329名年龄在50岁及以上的有效参与者。退休被定义为在观察期内开始领取养老金。主观幸福感使用10项生活满意度指数进行测量。我们首先采用潜在增长混合模型(LGMM)来识别主观幸福感的不同轨迹。然后,我们应用广义线性模型(GLM)来考察身体、财务、认知、情感和社会资源在退休前、过渡和退休后三个阶段如何影响这些轨迹。

结果

我们的研究结果揭示了退休期间主观幸福感的两条主要轨迹:“高增长”组和“低下降”组。与“低下降”组相比,“高增长”组的个体健康状况更好、经济状况更强、社会参与度更高、家庭支持更多且教育程度更高。此外,疾病较少、行为更健康且有配偶/伴侣的老年人在退休过渡期间更有可能保持高增长的幸福感轨迹。我们的研究结果还进一步表明了志愿服务在提高退休后主观幸福感方面的关键重要性。

讨论

本研究强调了在台湾独特背景下理解不同幸福感轨迹以及资源如何不同地影响退休阶段的重要性。政策制定者应认识到这种异质性,而不是实施一刀切的解决方案。鉴于家庭支持在提前退休中的关键作用以及志愿服务在后期日益重要,政策应加强家庭体系,同时扩大社会参与机会。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验