Bouchard Catherine, Bernatchez Renaud, Lavoie-Cardinal Flavie
CERVO Brain Research Centre, Québec, Québec, Canada.
Université Laval, Institute Intelligence and Data, Québec, Québec, Canada.
Neurophotonics. 2023 Oct;10(4):044405. doi: 10.1117/1.NPh.10.4.044405. Epub 2023 Aug 24.
Machine learning has revolutionized the way data are processed, allowing information to be extracted in a fraction of the time it would take an expert. In the field of neurophotonics, machine learning approaches are used to automatically detect and classify features of interest in complex images. One of the key challenges in applying machine learning methods to the field of neurophotonics is the scarcity of available data and the complexity associated with labeling them, which can limit the performance of data-driven algorithms. We present an overview of various strategies, such as weakly supervised learning, active learning, and domain adaptation that can be used to address the problem of labeled data scarcity in neurophotonics. We provide a comprehensive overview of the strengths and limitations of each approach and discuss their potential applications to bioimaging datasets. In addition, we highlight how different strategies can be combined to increase model performance on those datasets. The approaches we describe can help to improve the accessibility of machine learning-based analysis with limited number of annotated images for training and can enable researchers to extract more meaningful insights from small datasets.
机器学习彻底改变了数据处理方式,能够在专家所需时间的一小部分内提取信息。在神经光子学领域,机器学习方法用于自动检测和分类复杂图像中感兴趣的特征。将机器学习方法应用于神经光子学领域的关键挑战之一是可用数据稀缺以及与之相关的标注复杂性,这可能会限制数据驱动算法的性能。我们概述了各种策略,如弱监督学习、主动学习和域适应,这些策略可用于解决神经光子学中标注数据稀缺的问题。我们全面概述了每种方法的优缺点,并讨论了它们在生物成像数据集上的潜在应用。此外,我们强调了如何将不同策略结合起来以提高这些数据集上的模型性能。我们描述的方法有助于在用于训练的标注图像数量有限的情况下提高基于机器学习分析的可及性,并使研究人员能够从小数据集中提取更有意义的见解。