Serino Daniel A, Bell Evan, Klasky Marc, Southworth Ben S, Nadiga Balasubramanya, Wilcox Trevor, Korobkin Oleg
Theoretical Division, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM, 87545, USA.
Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM, 87545, USA.
Sci Rep. 2025 Jul 17;15(1):25915. doi: 10.1038/s41598-025-10869-3.
In high energy density physics (HEDP) and inertial confinement fusion (ICF), predictive modeling is complicated by uncertainty in parameters that characterize various aspects of the modeled system, such as those characterizing material properties, equation of state (EOS), opacities, and initial conditions. Typically, however, these parameters are not directly observable. What is observed instead is a time sequence of radiographic projections using X-rays. In this work, we define a set of sparse hydrodynamic features derived from the outgoing shock profile and outer material edge, which can be obtained from radiographic measurements, to directly infer such parameters. Our machine learning (ML)-based methodology involves a pipeline of two architectures, a radiograph-to-features network (R2FNet) and a features-to-parameters network (F2PNet), that are trained independently and later combined to approximate a posterior distribution for the parameters from radiographs. We show that the machine learning architectures are able to accurately infer initial conditions and EOS parameters, and that the estimated parameters can be used in a hydrodynamics code to obtain density fields, shocks, and material interfaces that satisfy thermodynamic and hydrodynamic consistency. Finally, we demonstrate that features resulting from an unknown EOS model can be successfully mapped onto parameters of a chosen analytical EOS model, implying that network predictions are learning physics, with a degree of invariance to the underlying choice of EOS model. To the best of our knowledge, our framework is the first demonstration of recovering both thermodynamic and hydrodynamic consistent density fields from noisy radiographs.
在高能密度物理(HEDP)和惯性约束聚变(ICF)中,预测建模因表征建模系统各个方面的参数存在不确定性而变得复杂,这些参数包括表征材料特性、状态方程(EOS)、不透明度和初始条件的参数。然而,通常这些参数是无法直接观测到的。相反,观测到的是使用X射线的射线照相投影的时间序列。在这项工作中,我们定义了一组从出射激波轮廓和外部材料边缘导出的稀疏流体动力学特征,这些特征可从射线照相测量中获得,以直接推断此类参数。我们基于机器学习(ML)的方法涉及两个架构的流水线,即射线照片到特征网络(R2FNet)和特征到参数网络(F2PNet),它们先独立训练,然后结合起来以近似从射线照片中获取的参数的后验分布。我们表明,机器学习架构能够准确推断初始条件和EOS参数,并且估计的参数可用于流体动力学代码中,以获得满足热力学和流体动力学一致性的密度场、激波和材料界面。最后,我们证明,未知EOS模型产生的特征可以成功映射到所选解析EOS模型的参数上,这意味着网络预测正在学习物理知识,并且对EOS模型的底层选择具有一定程度的不变性。据我们所知,我们的框架是首次展示从噪声射线照片中恢复热力学和流体动力学一致的密度场。