Puertas-Segura Antonio, Laganá Antonio, Rathee Garima, Savage Paul, Todorova Katerina, Dimitrov Petar, Pashkuleva Iva, Reis Rui Luís, Ciardelli Gianluca, Tzanov Tzanko
Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Terrassa 08222, Spain.
Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina 98122, Italy.
ACS Appl Mater Interfaces. 2025 Aug 6;17(31):44319-44332. doi: 10.1021/acsami.5c13979. Epub 2025 Jul 22.
Catheter-associated urinary tract infections (CAUTIs) account for 40% of hospital-acquired infections, increasing health risks, patient discomfort, morbidity, and hospitalisation time. Bacterial colonisation may occur both during catheter insertion and prolonged catheterization by microorganisms in the urinary tract, consequently, increasing the bacteriuria risk due to biofilm formation. Nanogels, a class of soft nanocarriers, offer remarkable versatility for developing functional coatings on indwelling medical devices that can efficiently prevent biofilm formation. In this study, we designed an antibacterial and antibiofilm coating by leveraging the ultrasound-assisted assembly and nanogel self-organization on silicone catheters. The nanogel comprising biocompatible gum arabic and poly(diallyldimethylammonium chloride) was used to encapsulate a synthetic broad-spectrum antimicrobial peptide mimetic ceragenin (CSA-131). A coating from this bioactive nanogel was sonochemically built on the catheters without any prior surface modification. In vitro and in vivo assays showed that the coating provided antimicrobial and antibiofilm activity for up to 7 days of catheterization, next to catheter lubricity. Cytotoxicity assessment confirmed the absence of toxic effects, underscoring the biocompatibility of the coating formulation. These findings highlighted the potential of nanogels, combined with ultrasound technology, as an innovative approach for durable antimicrobial and antibiofilm functionalization of urinary catheters, particularly susceptible to colonisation by microorganisms upon catheterization.
导尿管相关尿路感染(CAUTIs)占医院获得性感染的40%,会增加健康风险、患者不适、发病率和住院时间。在导尿管插入过程中以及长时间留置导尿管期间,尿路中的微生物均可能发生细菌定植,进而由于生物膜形成而增加菌尿风险。纳米凝胶作为一类软质纳米载体,在开发可有效防止生物膜形成的植入式医疗器械功能涂层方面具有显著的多功能性。在本研究中,我们利用超声辅助组装和纳米凝胶在硅胶导尿管上的自组装,设计了一种抗菌和抗生物膜涂层。由生物相容性阿拉伯胶和聚二烯丙基二甲基氯化铵组成的纳米凝胶用于包裹合成广谱抗菌肽模拟物角鲨素(CSA-131)。无需任何预先的表面改性,即可通过声化学方法在导尿管上构建这种生物活性纳米凝胶涂层。体外和体内试验表明,该涂层在长达7天的导尿管留置期内均具有抗菌和抗生物膜活性,同时还具有导尿管润滑性。细胞毒性评估证实该涂层无毒性作用,突出了该涂层配方的生物相容性。这些发现凸显了纳米凝胶与超声技术相结合,作为一种创新方法用于对导尿管进行持久抗菌和抗生物膜功能化的潜力,尤其是导尿管在插入后特别容易被微生物定植。