Ghebouli M A, Bouferrache K, Ghebouli B, Fatmi M, Alanazi Faisal K, Althagafi Talal M
Research Unit on Emerging Materials (RUEM), University Ferhat Abbas of Setif 1 Setif 19000 Algeria.
Department of Chemistry, Faculty of Sciences, University of M'sila University Pole Road Bordj Bou Arreridj M'sila 28000 Algeria.
RSC Adv. 2025 Jul 23;15(32):26338-26346. doi: 10.1039/d5ra03204k. eCollection 2025 Jul 21.
This study presents a comprehensive first-principles investigation of SrFAgX (X = S, Se, Te) semiconductors, focusing on the effect of chalcogen substitution on structural, elastic, electronic, and optical behavior. Using DFT-GGA calculations, we uncover systematic structure-property relationships, pressure-induced band gap tuning, and anisotropic compressibility across the series. These findings reveal how electronic and optical features can be tailored for targeted optoelectronic and spintronic applications within the generalized gradient approximation (GGA). The structural parameters, including lattice constants and internal atomic positions, show good agreement with experimental data, confirming the reliability of the computational model. The elastic constants and related mechanical moduli reveal that SrFAgS is the stiffest compound, while SrFAgSe exhibits higher flexibility, indicating tunable mechanical behavior depending on the chalcogen element. Electronic band structure analysis demonstrates that all three compounds have direct band gaps, which decrease systematically from S to Te due to enhanced orbital interactions. The calculated partial and total density of states highlight significant contributions from Ag-d and X-p states near the Fermi level, indicating strong hybridization effects. Optical properties, including dielectric function, absorption coefficient, reflectivity, refractive index, and optical conductivity, reveal systematic trends across the series, showing an enhanced optical response in SrFAgTe. These findings establish a foundation for understanding the chalcogen-dependent behavior of these materials and highlight their potential for optoelectronic, thermoelectric, and spintronic applications.
本研究对SrFAgX(X = S、Se、Te)半导体进行了全面的第一性原理研究,重点关注硫族元素取代对结构、弹性、电子和光学行为的影响。通过密度泛函理论广义梯度近似(DFT-GGA)计算,我们揭示了该系列材料中系统的结构-性能关系、压力诱导的带隙调谐以及各向异性压缩性。这些发现揭示了在广义梯度近似(GGA)范围内,如何针对目标光电子和自旋电子应用来调整电子和光学特性。包括晶格常数和内部原子位置在内的结构参数与实验数据吻合良好,证实了计算模型的可靠性。弹性常数和相关的力学模量表明,SrFAgS是最硬的化合物,而SrFAgSe具有更高的柔韧性,这表明其力学行为可根据硫族元素进行调节。电子能带结构分析表明,所有这三种化合物都具有直接带隙,由于轨道相互作用增强,从S到Te带隙系统性减小。计算得到的部分态密度和总态密度突出了费米能级附近Ag-d和X-p态的显著贡献,表明存在强烈的杂化效应。光学性质,包括介电函数、吸收系数、反射率、折射率和光导率,揭示了该系列材料的系统趋势,表明SrFAgTe具有增强的光学响应。这些发现为理解这些材料的硫族元素依赖性行为奠定了基础,并突出了它们在光电子、热电和自旋电子应用方面的潜力。