Suppr超能文献

深度学习在真菌荧光图像中菌丝和孢子识别方面的应用。

Deep learning application to hyphae and spores identification in fungal fluorescence images.

作者信息

Ren Ruisong, Tan Wenyu, Chen Shiting, Xu Xiaoya, Zhang Dadong, Chen Peilin, Zhu Min

机构信息

Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.

SODA Data Technology Inc, Shanghai, China.

出版信息

Sci Rep. 2025 Jul 26;15(1):27222. doi: 10.1038/s41598-025-11228-y.

Abstract

This study explores the application of deep learning to fungal disease diagnosis, focusing on an automated detection system for hyphae and spores in clinical samples. This study employs a combination of the YOLOX and MobileNet V2 models to analyze fungal fluorescence images. The YOLOX model is used to identify individual fungal spores and hyphae, and the MobileNet V2 model is employed to identify fungal mycelium. Finally, their combination yields the results of the two analysis processes, providing positive or negative results for the entire sample set. The proposed dual-model framework is evaluated in terms of the precision, recall, F1-score, and Kappa metrics. For the YOLOX model, the precision is 85% for hyphae and 77% for spores, and for the MobileNet V2 model, the precision is 83%. The recall value of the YOLOX model is 90% for hyphae and 85% for spores, and that of the MobileNet V2 model is 100%. The agreement of the proposed dual-model framework with the doctors' evaluations in terms of precision, recall, and Kappa values is 92.5%, 99.3%, and 0.857, respectively. The high agreement value suggests the proposed dual-model framework's ability to identify fungal hyphae and spores in fluorescence images can reach the level of clinicians. With the help of the proposed framework, the time and labor of fungal diagnosis can be significantly saved.

摘要

本研究探索深度学习在真菌疾病诊断中的应用,重点关注临床样本中菌丝和孢子的自动检测系统。本研究采用YOLOX和MobileNet V2模型相结合的方式来分析真菌荧光图像。YOLOX模型用于识别单个真菌孢子和菌丝,MobileNet V2模型用于识别真菌菌丝体。最后,它们的结合产生两个分析过程的结果,为整个样本集提供阳性或阴性结果。所提出的双模型框架通过精度、召回率、F1分数和Kappa指标进行评估。对于YOLOX模型,菌丝的精度为85%,孢子的精度为77%;对于MobileNet V2模型,精度为83%。YOLOX模型菌丝的召回值为90%,孢子的召回值为85%,MobileNet V2模型的召回值为100%。所提出的双模型框架在精度、召回率和Kappa值方面与医生评估的一致性分别为92.5%、99.3%和0.857。较高的一致性值表明所提出的双模型框架在荧光图像中识别真菌菌丝和孢子的能力可以达到临床医生的水平。借助所提出的框架,可以显著节省真菌诊断的时间和人力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e462/12297288/5446cfcf92cc/41598_2025_11228_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验