Ren Ruisong, Tan Wenyu, Chen Shiting, Xu Xiaoya, Zhang Dadong, Chen Peilin, Zhu Min
Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.
SODA Data Technology Inc, Shanghai, China.
Sci Rep. 2025 Jul 26;15(1):27222. doi: 10.1038/s41598-025-11228-y.
This study explores the application of deep learning to fungal disease diagnosis, focusing on an automated detection system for hyphae and spores in clinical samples. This study employs a combination of the YOLOX and MobileNet V2 models to analyze fungal fluorescence images. The YOLOX model is used to identify individual fungal spores and hyphae, and the MobileNet V2 model is employed to identify fungal mycelium. Finally, their combination yields the results of the two analysis processes, providing positive or negative results for the entire sample set. The proposed dual-model framework is evaluated in terms of the precision, recall, F1-score, and Kappa metrics. For the YOLOX model, the precision is 85% for hyphae and 77% for spores, and for the MobileNet V2 model, the precision is 83%. The recall value of the YOLOX model is 90% for hyphae and 85% for spores, and that of the MobileNet V2 model is 100%. The agreement of the proposed dual-model framework with the doctors' evaluations in terms of precision, recall, and Kappa values is 92.5%, 99.3%, and 0.857, respectively. The high agreement value suggests the proposed dual-model framework's ability to identify fungal hyphae and spores in fluorescence images can reach the level of clinicians. With the help of the proposed framework, the time and labor of fungal diagnosis can be significantly saved.
本研究探索深度学习在真菌疾病诊断中的应用,重点关注临床样本中菌丝和孢子的自动检测系统。本研究采用YOLOX和MobileNet V2模型相结合的方式来分析真菌荧光图像。YOLOX模型用于识别单个真菌孢子和菌丝,MobileNet V2模型用于识别真菌菌丝体。最后,它们的结合产生两个分析过程的结果,为整个样本集提供阳性或阴性结果。所提出的双模型框架通过精度、召回率、F1分数和Kappa指标进行评估。对于YOLOX模型,菌丝的精度为85%,孢子的精度为77%;对于MobileNet V2模型,精度为83%。YOLOX模型菌丝的召回值为90%,孢子的召回值为85%,MobileNet V2模型的召回值为100%。所提出的双模型框架在精度、召回率和Kappa值方面与医生评估的一致性分别为92.5%、99.3%和0.857。较高的一致性值表明所提出的双模型框架在荧光图像中识别真菌菌丝和孢子的能力可以达到临床医生的水平。借助所提出的框架,可以显著节省真菌诊断的时间和人力。